Python中利用guiqwt进行曲线数据拟合。
创新互联建站专注为客户提供全方位的互联网综合服务,包含不限于成都网站设计、成都网站建设、乌拉特后网络推广、小程序定制开发、乌拉特后网络营销、乌拉特后企业策划、乌拉特后品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联建站为所有大学生创业者提供乌拉特后建站搭建服务,24小时服务热线:13518219792,官方网址:www.cdcxhl.com
示例程序:
图形界面如下:
在了解了最小二乘法的基本原理之后 python_numpy实用的最小二乘法理解 ,就可以用最小二乘法做曲线拟合了
从结果中可以看出,直线拟合并不能对拟合数据达到很好的效果,下面我们介绍一下曲线拟合。
b=[y1]
[y2]
......
[y100]
解得拟合函数的系数[a,b,c.....d]
CODE:
根据结果可以看到拟合的效果不错。
我们可以通过改变
来调整拟合效果。
如果此处我们把拟合函数改为最高次为x^20的多项式
所得结果如下:
矫正 过拟合 现象
在保持拟合函数改为最高次为x^20的多项式的条件下,增大样本数:
通过结果可以看出,过拟合现象得到了改善。
matlab的话
方法一
用[xx,yy] = meshgrid(x_min:step:x_max,y_min:step:y_max)生成x和y的坐标
用zz = griddata(x,y,z,xx,yy,'v4')插值生成相应的z坐标
方法二
用tri = delaunay(x,y)让点自行连接成一个个三角形
trisurf(tri,x,y,z)生成曲面
再用shading interp 插值拟合
如果你的曲面在xy平面的投影不是矩形的话,记得用inpolygon吧不在区域内的点删除掉
很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。
运行结果:
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款