数据挖掘现在用的比较多的是python。
专注于为中小企业提供成都网站建设、做网站服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业类乌齐免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了成百上千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
数据分析这块现在用的比较多的是scala。
php不适合做大数据分析
大数据对于我们这些从业者来说,是不太喜欢说的一个词。所谓内行看门道,外行看热闹,大数据这两年风风火火,大家都争先恐后的讨论着,但说到如何掌握或者运用,很多人是不知所措的。
私以为,大数据的核心在三个地方:数学+计算机知识+业务
先说说题主说到的编程,我在这里将它纳入计算机知识这一部分,因为编程对于我们来说只是大数据的冰山一角。这两年大数据的发展,绝对不是因为编程语言的进步,很大一部分是由于计算机工具的进步或者硬件的提升。 尤其是现在计算机硬件价格的下跌,以及大数据处理工具的发展,如hadoop,spark等,带来了数据处理能力的飞速提升,才导致了现在大数据的越来越火。
至于我们说的数据挖掘知识和编程语言,这些都是很早以前就已经存在的知识,这几年也没有得到很令人惊喜的新进展(我说的是知识本身,不是指应用)。
总之: 大数据之所以得到人们关注,最重要的是数据处理工具的进步以及数据量的累积(尤其是互联网)
那么是不是说明 掌握编程或者计算机工具就是迈入大数据的关键路径呢?
答案:显然不是,数学才是真正的核心知识。
没错,数学是在数据挖掘领域非常重要的甚至是核心的部分,编程只是工具,真的只是工具。 编程语言有好几十种吗,但是数据挖掘理论知识就那儿点。 你用任何一门语言去实现你的数学思想便可以达到数据挖掘的目标。 学术研究甚至可以抛弃编程,完全只研究算法(注意:这样的话会容易造成纸上谈兵)。
数据挖掘和大数据是很好的方向,涉及编程不多,主要是使用现成的软件。肯定是技术活啦。
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款