1、查看数据类型:type(a)
创新互联建站专注于企业成都全网营销推广、网站重做改版、惠安网站定制设计、自适应品牌网站建设、H5高端网站建设、商城系统网站开发、集团公司官网建设、成都外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为惠安等各大城市提供网站开发制作服务。
2、查看已安装的包:
在dos命令行界面:如果你使用的是pip来作为你的python包管理器的话,可以在命令行下直接运行$ pip freeze或者$ pip list来查看安装包的信息,当然其它的包管理器也有类似的功能,同时,你也可以在python交互式解释器中导入pip模块来查看包信息。
在python提示符下,用help(‘modules’),可以显示所有包名称,用import sys as s s.modules.keys() ,可以显示系统模块;
3、在LINUX环境下安装anaconda:;utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_defaultdepth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_defaultutm_relevant_index=5
1)先找需要安装版本的官网地址链接,如;
2)在linux控制台输入:wget
3)先赋权在安装程序:chmod +x Anaconda3-5.3.0-Linux-x86_64.sh
./Anaconda3-5.3.0-Linux-x86_64.sh
4)一直按ENTER,直到出现选择yes or no,输入yes;
5)继续按ENTER,直到出现选择yes,输入yes,添加环境变量;
6)若上面这一步没选择yes,会默认选择no,则需要自己到安装anaconda的路径下,设置环境变量:
export PATH=/home/anaconda3/bin:KaTeX parse error: Expected 'EOF', got '#' at position 36: …一句话注释掉: #̲ export PATH=/u…PATH
export PATH=/root/anaconda3/bin:$PATH
8)然后,保存更改:source ~/.bashrc
9)检测是否安装成功:
进入自己的文件夹目录下输入:anaconda -V conda -V
4、在linux环境下下载并安装mysql:…%2522%257Drequest_id=164517585116780265466903biz_id=0utm_medium=distribute.pc_search_result.none-task-blog-2blogbaidu_landing_v2~default-3-89874564.nonecaseutm_term=linux%E7%8E%AF%E5%A2%83%E4%B8%8B%E5%AE%89%E8%A3%85mysqlspm=1018.2226.3001.4450
1)先找安装包网址链接:从官网或者网盘下载
2)用linux命令将安装包下载到指定文件夹下:wget
3)再安装到指定目录下:
cd 路径
解压:tar -zxvf mysql-5.7.25-linux-glibc2.12-x86_64.tar.gz
修改文件夹名称:mv mysql-5.7.25-linux-glibc2.12-x86_64 /mysql
2)新建data目录
命令:mkdir /mysql/data
3)新建mysql用户组及mysql用户
命令:groupadd mysql //新建用户组
命令:useradd mysql -g mysql //新建用户
4)将/usr/local/mysql的所有者及所属组改为mysql
chown -R mysql.mysql /usr/local/mysql
5)配置
命令:/usr/local/mysql/bin/mysql_install_db --user=mysql --basedir=/usr/local/mysql/ --datadir=/usr/local/mysql/data
6)配置/etc/my.cnf
vim /etc/my.cnf
7)开启服务
命令:cp /usr/local/mysql/support-files/mysql.server /etc/init.d/mysql //将mysql加入服务
命令:chkconfig mysql on //开机自动启动
命令:service mysql start //开启mysql服务
开启mysql服务报错, 在这里插入图片描述
8)设置密码
命令:/usr/local/mysql/bin/mysql -u root -p //在my.cnf中配置了取消密码验证,此处密码任意输入
命令:use mysql; //操作mysql数据库
命令:update user set authentication_string=password(‘你的密码’) where user=‘root’; //修改密码
命令:flush privileges;
命令:exit; //退出
9)将/etc/my.cnf中的skip-grant-tables删除
10)如果是本机安装则到此步骤已经安装配置完成,如果是在虚拟机或者远程服务器上安装,则需要以下步骤
允许远程连接
命令:/usr/local/mysql/bin/mysql -u root -p //登录
命令:use mysql;
命令:update user set host=’%’ where user = ‘root’;
命令:flush privileges;
命令:exit;
Pandas
dataframe:
1、dataframe,如何查看一个DataFrame对象的所有索引,列名,以及DataFrame中具体的值?
有一个dataframe对象df1,查看索引使用使用df1.index,查看列名使用df1.columns,查看所有的值为df1.values。
2、创建dataframe:
df1=pd.DataFrame(np.arange(16).reshape(4,4),
index = pd.date_range(‘20200101’, periods = 4),
columns=list(‘ABCD’))
3、使用df1.index返回的是一个索引,如果获取具体的值的话,需要使用df1.index.values转化为列表。
4、根据列名取dataframe的数据
基本格式:dataframe[列名]
1)取多列
列名要用中括号括起来,所以下述命令
dataframe[[‘P4_profit_rate’,‘P3PS’,‘P3NS’]] 没问题,返回pandas.core.frame.DataFrame类型的值
dataframe[‘P4_profit_rate’,‘P3PS’,‘P3NS’]出错
2)取一列
列名可以不用中括号括起来,
dataframe[‘P4_profit_rate’] 没问题,返回pandas.core.series.Series类型的值
列名也可以用中括号括起来,
dataframe[[‘P4_profit_rate’]] 也能正常运行,但返回pandas.core.frame.DataFrame类型的值
1. 常用基本方法及属性
df.info() 输出总行数、各列的行数、类型、索引、占用内存等信息;
df.index 输出索引,为 pandas.core.indexes.range.RangeIndex 类型;
df.columns 输出列名,为pandas.core.indexes.base.Index 类型,可使用df.columns.str ;
df.dtypes 各列的类型,输出一个series,值是object类型;
df.values 值,输出一个 array ;
df.describe() 输出各数值列的统计值,如非空个数、均值、std、极值、分位数。
2. 索引
df.set_index() 设置索引,括号内可以填入DataFrame中某列的列名,就能使用此列作为索引;
df.loc[ ] 以label索引,可实现花哨的混合索引,如:df.loc[ df.density100, [‘pop’, ‘density’] ] ;
df.iloc[ ] 以绝对位置索引,即数字;
掩码操作,如 df[ df [‘density’] 100 ] 。
3. 计算:
df.cov() 协方差,df.corr() 相关系数,df.mean(axis = 1),df.median(),df.max();
df[ ‘Age’ ].value_counts(ascending = True, bins = 5) 非nan计数(升序排列,分箱);
pd.cut()也能实现连续值离散化,pandas.cut(x,bins,right=True,labels=None,retbins=False,precision=3,include_lowest=False)。
4. 增删改查、合并、排序
使用df.copy()防止误修改df;
df.rename(index = {‘a’ : ‘A’}, inplace = True) 重命名索引,注意需要inplace为True才能真正修改;
df.append(df2) 增加;
df.drop([‘a’, ‘b’], inplace = True) 删除;
data.drop_duplicates()去重,subset参数可以选择具体的列;
df3 = pd.concat([df1,df2], axis = 0) 实现两个DataFrame的简易合并;
pd.merge(on, left_on, right_on, left_index, right_index, how, suffixes) 数据表连接操作,on可以指定多个列作为键;
多列排序 data.sort_values(by=[‘group’,‘data’],ascending = [False,True],inplace=True),即在by、ascending处传入list,会先按’group’列再按’data’列排序。
5. groupby聚合 和数据透视表pivot_table(相当于多维的groupby操作)
df.pivot_table(index = ‘Sex’, columns=‘Pclass’, values=‘Fare’,aggfunc = ‘sum’) ,aggfunc默认是mean;
6. 时间序列
Pandas所有关于日期与时间的处理方法全部是通过Timestamp对象实现的;
pd.to_datetime(‘2017-11-24’) 把str转化为Timestamp对象(pd.Timestamp也可以);
ts + pd.Timedelta(‘5 days’) 用Timedelta加上时间间隔;
pd.read_csv()方法中参数parse_dates = True,可以直接将数据中的时间作为索引;
将时间戳作为索引值取出对应时间段内的数据:data[pd.Timestamp(‘2012-01-01 09:00’):pd.Timestamp(‘2012-01-01 19:00’)] ,
同时也可以使用 data[‘2013’],data[‘2012-01’:‘2012-03’] 等简便方式;
仅取1月份的数据 data[data.index.month == 1] ;
时间重采样,将原始数据转化为均匀间隔的数据,
DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention=‘start’,kind
=None, loffset=None, limit=None, base=0),如df.resample(‘3D’)方法,对3天的数据进行重采样。
7. apply自定义函数 DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), kwds),说明:
允许传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple,
关键字参数允许传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。
8.缺失值:DataFrame.isnull().any(),.fillna() 等。
9.字符串Series.str.lower(),str是Series的一个属性,s.str.upper(),s.str.len(),index.str.strip(),df.columns.str.replace(’ ‘,’‘),s.str.split(’‘),s.str.contains(‘Ag’),s.str.get_dummies(sep = ‘|’) 。
10、notebook显示设置:
pd.set_option(),pd.get_option()用于使用Notebook做展示;
pd.set_option(‘display.max_columns’,30),pd.set_option(‘display.max_colwidth’,100),
pd.set_option(‘display.max_colwidth’,100)。
11、重复记录处理
1)生成重复记录
#生成重复数据
df=pd.DataFrame(np.ones([5,2]),columns=[‘col1’,‘col2’])
df[‘col3’]=[‘a’,‘b’,‘a’,‘c’,‘d’]
df[‘col4’]=[3,2,3,2,2]
df=df.reindex(columns=[‘col3’,‘col4’,‘col1’,‘col2’]) #将新增的一列排在第一列
2)判断重复记录
isDplicated=df.duplicated() #判断重复数据记录
3)删除重复值
new_df1=df.drop_duplicates() #删除数据记录中所有列值相同的记录
new_df2=df.drop_duplicates([‘col3’]) #删除数据记录中col3列值相同的记录
new_df3=df.drop_duplicates([‘col4’]) #删除数据记录中col4列值相同的记录
new_df4=df.drop_duplicates([‘col3’,‘col4’]) #删除数据记录中(col3和col4)列值相同的记录
4)python去重drop_duplicates后一定要reset_index()。
pandas.DataFrame.reset_index
函数作用:重置索引或其level。
重置数据帧的索引,并使用默认索引。如果数据帧具有多重索引,则此方法可以删除一个或多个level。
函数主要有以下几个参数:reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=’')
各个参数介绍:
level:可以是int, str, tuple, or list, default None等类型。作用是只从索引中删除给定级别。默认情况下删除所有级别。
drop:bool, default False。不要尝试在数据帧列中插入索引。这会将索引重置为默认的整数索引。
inplace:bool, default False。修改数据帧(不要创建新对象)。
col_level:int or str, default=0。如果列有多个级别,则确定将标签插入到哪个级别。默认情况下,它将插入到第一层。
col_fill:object, default。如果列有多个级别,则确定其他级别的命名方式。如果没有,则复制索引名称。
返回:
DataFrame or None。具有新索引的数据帧,如果inplace=True,则无索引。
python使用问题集锦
1、报错:NameError: name ‘scipy’ is not defined
使用!pip install packages scipy,重新安装成功后,还报错;在运行前先from scipy import optimize,再运行也报错;
还有说是注释或者换行等问题导致的,都无法解决,最后一个可能再试试:在安装scipy前要先安装numpy+mkl(非numpy)。
在如下地址下载安装numpy:
Numpy+MKL is linked to the Intel® Math Kernel Library and includes required DLLs in the numpy.DLLs directory.
下载完成后,在cmd命令行中用pip install numpy-1.22.2+mkl-pp38-pypy38_pp73-win_amd64.whl进行安装,报错如下:
ERROR: numpy-1.22.2+mkl-pp38-pypy38_pp73-win_amd64.whl is not a supported wheel on this platform.
错误原因:安装的不是对应python版本的库,下载的库名中cp27代表python2.7,其它同理。我的python是3.8版本,重新下载后,再安装,进入正常流程中。但是又报如下错误: 在这里插入图片描述
文章知识点与官方知识档案匹配
Python入门技能树首页概览
208764 人正在系统学习中
点击阅读全文
打开CSDN APP,看更多技术内容
Pandas的基本功能_笑 瘾的博客_pandas作用
一、Pandas的常用32个方法和功能 DataFrame() 创建一个DataFrame对象 df.values 返回ndarray类型的对象 df.shape 返回行列数 df.index 获取行索引 df.set_index 设置索引 df.reset_index 重制索引 df.columns 获取列索引 df.rename 重...
继续访问
pandas教程:pandas主要功能详解_hello-java-maker的博客_pand...
df =pd.read_csv("Counts.csv", header=0) df.head() 1 2 选择/切片 df[‘column_name’] ,df[row_start_index, row_end_index] 选取指定整列数据 df['name'] # 选取一列,成一个series df[['name']] # 选取一列...
继续访问
numpy‑1.21.4+mkl‑pp38‑pypy38_pp73‑win_amd64.whl
numpy‑1.21.4+mkl‑pp38‑pypy38_pp73‑win_amd64.whl
Python数据分析 | (17) pandas的基本功能
本篇博客中,我将介绍操作Series和DataFrame中的数据的基本手段。后续将更加深入地挖掘pandas在数据分析和处理方面的功能。这不是pandas库 的详尽文档,主要关注的是最重要的功能,那些不大常用的内容(也就是那 些更深奥的内容)就交给你自己去摸索吧。 目录 1. 重新索引 2. 丢弃指定轴上的项 3. 索引、选取和过滤 4. 整数索引 5. 算术运算和数据对齐 6. ...
继续访问
最新发布 python安装ERROR: matplotlib-3.6.2-pp38-pypy38_pp73-win_amd64.whl is not a supported wheel on this plat
我把文件名称改为matplotlib-3.6.2-py39-none-any.whl。2、看到支持的文件的名称是py30-none-any。
继续访问
热门推荐 使用python经常出现NameError: name 'xxx' is not defined
使用python经常出现NameError: name ‘xxx’ is not defined感觉神之存在的Bug 用注释居然解决了 之前k_means一直是没定义后来加了注释#abc就解决了from sklearn.cluster import k_means# abc如下图所示:解决后感觉太特么奇妙了
继续访问
pandas中index索引功能是什么
pandas的索引对象可以用来保存坐标轴标签和其它元数据,是使用过程中必要的参与对象,那pandas中index索引功能是什么呢?pandas中index索引可以轻松的读取数据,更方便的数据查询,使用index查询的时候可以获得性能提升。 一、index索引特点 更方便的数据查询,使用index查询的时候可以获得性能提升; 自动的数据对齐功能; 更多更强大的数据结构支持。 二、index索引用途 1、使用index读取数据 import pandas as pd df = pd.read_csv("./.
继续访问
pandas 基础功能(二)
pandas 基础功能(二) 1.新增 2.删除 3.修改数据 1.新增 1)在最后新增一列(列S): df["列S]=list ## 增加列的元素个数要跟原数据列的个数一样 2)在指定位置新增一列(列Q): # 语法格式:列表.insert(index, obj) # index ---对象 obj 需要插入的索引位置。 # obj --- 要插入列表中的对象(列名) col_name=df1.columns.tolist() # 将数据框的列...
继续访问
【报错解决】复现Deep Supervised Cross-Modal Retrieval报错module scipy has no attribute spatial的解决
module scipy has no attribute spatial报错的解决。
继续访问
Python函数调用出现NameError: name ‘xxx‘ is not defined的解决办法
原因: 函数里用的是局部变量,从而函数调用结束后会被销毁。如果不声明是全局变量,那么就会报错:(注意灰色字体注释的地方) def load_data(): from keras.datasets import mnist # global train_image, train_lable , test_image, test_lable (train_image, train_lable), (test_image, test_lable) = mnist.load_data.
继续访问
Python使用pip安装报错:is not a supported wheel on this platform的解决方法
我的python是3.8 win64位 安装cryptography报错is not a supported wheel on this platform 首先我是在官网cryptography · PyPI下载的cryptography-37.0.2-pp38-pypy38_pp73-win_amd64.whl 官网如下,安装的时候报错cryptography · PyPI 解决版本:改安装报的名字 步骤一,cmd里面输入pip debug --verbose,会列出支持包的名字,我把包的名字改
继续访问
Python-Pandas{数据结构与基本功能}
PandsSeries手动构建SeriesSeries的索引和切片按照字典的方式进行索引和切片 Pandas通常是用于数据分析过程中, 数据的清洗, 数据预处理, 数据的描述性分析等过程中。在整个Python数据分析的生态环境中, Pandas的地位非常重要, 利用Pandas可以快速便捷的对数据进行各种各样的处理与操作. 在Pandas中, 最重要的两种数据结构是1维的Series和2维的DataFrame. Series:一维数组,与Numpy中的一维array类似。二者与Python基本的数
继续访问
Pandas 10. 索引index的用途
更方便的数据查询:df.loc[index, :]使用index会提升查询性能自动的数据对齐功能;使用index.更多更强大的数据结构支持 很多强大的索引数据结构Categoricallndex,基于分类数据的Index,提升性能;Multilndex,多维索引,用于groupby多维聚合后结果等;Datetimelndex,时间类型索引,强大的日期和时间的方法支持:
继续访问
Pandas的索引index的用途(十一)
1、Pandas的索引index的用途 把数据存储于普通的column列也能用于数据查询,那使用index有什么好处? index的用途总结: 1、更方便的数据查询; 2、使用index可以获得性能提升; 3、自动的数据对齐功能; 4、更多更强大的数据结构支持; 2、实例用途 (1)读取数据 import pandas as pd df = pd.read_csv...
继续访问
python语法基础
1.import 和 from … import 模块的变量、方法引用差异 from pandas import DataFrame from…import // 直接使用函数名使用就可以了 import pandas as pd import //模块.函数 a.import…as import:导入一个模块;注:相当于导入的是一个文件夹,是个相对路径 import A as B:给予工具库 A 一个简单的别称 B ,可以帮助记忆。例:import torc...
继续访问
python数据分析学习(3)
python数据分析·numpy的一些函数
继续访问
Pandas详解三之Index对象
约定 import pandas as pd from pandas import DataFrame import numpy as np Index Index对象保存着索引标签数据,它可以快速找到标签对应的整数下标,其功能与Python的字典类似。 dict1={"Province":["Guangdong","Beijing","Qinghai","Fu...
继续访问
Pandas的索引index的用途
##Pandas的索引index的用途 '''把数据存储于普通的column列也能用于数据查询,那使用index有什么好处?index的用途总结: 1.更方便的数据查询; 2.使用index可以获得性能提升; 3.自动的数据对齐功能; 4.更多更强大的数据结构支持;''' import pandas as pd df =pd.read_csv('F:\\python387\\pandas\\antlearnpandasmaster\\datas\\ml_latest_small\\ratings.csv'.
继续访问
python创建python.py时遇到的问题 name is not defined
创建py文件之后,运行文件时报错: 是一个nameerror,说var为定义,所以执行不成功。这是因为将var定义在了函数里面,即return后一行的代码缩进了,导致var没有定义成功,只需要去除缩进就可以了。 更改如下: ...
继续访问
pandas的Index对象
Index对象保存着索引标签数据,它可以快速找到标签对应的整数下标,其功能与Python的字典类似。 dict1={"Province":["Guangdong","Beijing","Qinghai","Fujiang"], "year":[2018]*4, "pop":[1.3,2.5,1.1,0.7]} df1=DataFrame(dict1) df1 1 2 3 4 5 代码结果 Province pop year 0 Guangdong 1.3...
继续访问。
新建一个存储过程进行判断
DELIMITER //CREATE DEFINER=`baixiong`@`%` FUNCTION `getFirstCode`(in_string VARCHAR(100)) RETURNS varchar(100) CHARSET utf8DETERMINISTICCOMMENT '获取中文首字母函数'BEGIN#定义临时字符串变量,用于接收函数中传递进来的字符串值,这里是in_stringDECLARE tmp_str VARCHAR(100) CHARSET gbk DEFAULT '' ;#定义临时字符串变量,用于存放函数中传递进来的字符串值的第一个字符DECLARE tmp_char VARCHAR(2) CHARSET gbk DEFAULT '';#tmp_str的长度DECLARE tmp_loc SMALLINT DEFAULT 0;#初始化,将in_string赋给tmp_strSET tmp_str = in_string;#获取tmp_str最左端的首个字符,注意这里是获取首个字符,该字符可能是汉字,也可能不是。SET tmp_char = LEFT(tmp_str,1);#获取字符的编码范围的位置,为了确认汉字拼音首字母是那一个SET tmp_loc=INTERVAL(CONV(HEX(tmp_char),16,10),0xB0A1,0xB0C5,0xB2C1,0xB4EE,0xB6EA,0xB7A2,0xB8C1,0xB9FE,0xBBF7,0xBFA6,0xC0AC,0xC2E8,0xC4C3,0xC5B6,0xC5BE,0xC6DA,0xC8BB,0xC8F6,0xCBFA,0xCDDA ,0xCEF4,0xD1B9,0xD4D1);#判断左端首个字符是多字节还是单字节字符,要是多字节则认为是汉字且作以下拼音获取,要是单字节则不处理。如果是多字节字符但是不在对应的编码范围之内,即对应的不是大写字母则也不做处理,这样数字或者特殊字符就保持原样了IF (LENGTH(tmp_char)1 AND tmp_loc0 AND tmp_loc24) THENSELECT ELT(tmp_loc,'A','B','C','D','E','F','G','H','J','K','L','M','N','O','P','Q','R','S','T','W','X','Y','Z') INTO tmp_char; #获得汉字拼音首字符END IF;RETURN tmp_char;#返回汉字拼音首字符END//DELIMITER ;
select distinct d.deptno,d.dname from dept d,emp e where e.deptno=d.deptno;
其中distinct是去重用的,d.deptno,d.dname分别是两个字段,第一个是部门号,第二个是部门名称,合起来的意思就是同时去重,如果不加distinct可能结果会出现部门号和部门名称同时重复的样子,这样以后,就会重复的只显示一次了,你如果表里有数据,可以自己加上distinct和不加distinct都运行一次试试看结果。
mysql安装好以后,是在命令行窗口使用,这样使用起来很不方便。所以你还需要安装mysql的图形化客户端,如 Mysql-front 、navgate for mysql等等,他们就相当于SqlServer的企业管理器能让你更直观的操作数据库。至于使用,如果单纯为了应用的话,学习sql语法就行了。只要你掌握了思想,MySQL对你来说它也仅仅是一个工具而已。别想那么复杂。 人们不可能详细的在这里为你详细的解说mysql具体是怎么使用的。你可以从网上搜索它的手册,看一看就回了。 祝你成功!
4.4.2修改字段名
语句格式:ALTER TABLE 表名 CHANGE 旧字段名 新字段名 新数据类型;
在上面语句格式中,“表名”指定要修改的是哪个表,“旧字段名”指定要修改表中哪个字段(的字段名),“新字段名”指定要修改成的新字段名,“新数据类型”指定修改字段名后的字段数据类型(注意:新数据类型不能省掉,表中字段更改字段名后即便数据类型不改,也要给出新数据类型)。
下面截图中的“ALTER TABLE”语句将t_dept表中loc字段更名为location,修改之前和修改之后的“desc”语句执行结果的对比中可以看出loc字段被修改成了location。
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款