如何选择数据库
创新互联公司专业成都网站制作、成都做网站,集网站策划、网站设计、网站制作于一体,网站seo、网站优化、网站营销、软文平台等专业人才根据搜索规律编程设计,让网站在运行后,在搜索中有好的表现,专业设计制作为您带来效益的网站!让网站建设为您创造效益。
柳树
公众号:柳树的絮叨叨
关注他
30 人赞同了该文章
我们正在做一个电子书小程序。
1.0 层次模型数据库
用户购买,生成订单,订单详情里有用户购买的电子书:
一层一层铺开,一对多,这是「层次模型数据库」(Hierarchical Database)。
2.0 网状模型数据库
一笔订单可以购买多本电子书,一本电子书也可以被多笔订单购买:
这就形成了「多对多」的「网状模型数据库」(Network Database)。
上面讲的两种数据库,也许你听都没听过。
我们用的,是「关系模型」,而非上面的「层次模型」或者「网状模型」。
为什么?
你会说,这样不方便遍历所有订单。
并不会,再加一个根节点就好:
你会说,这样查找效率很低。
也不会,因为可以优化下数据结构,比如换成 B+ 树。
为什么我们从一开始就在用「关系模型数据库」?
3.0 关系模型数据库
无论是层次模型还是网状模型,程序员看到的,都是实实在在的物理存储结构。
查询时,你要照着里面的数据结构,用对应的算法来查;
插入时,你也要照着数据结构,用对应算法来插入,否则你就破坏了数据的组织结构,数据也就坏掉了。
因为我们都没用过前面两种数据库,所以觉得「关系模型数据库」(以下简称 RDB)的一切都理所当然,但其实,它做出了一个革命性的变革:
用逻辑结构(logical representation of data)代替物理结构(physical representation of data)
所谓「逻辑结构」,也就是我们经常看到的「表格」,User 是一张表格,Order 是一张表格,Book 又是一张表格,它们之间的关系,用 id 来关联,这些 id,可能是 number 类型,也可能是 string 类型
但你看到的,不一定就是实际的,你看到的只是让你方便理解的「逻辑结构」,真实数据自然不是这样按表格来存储,表格无异于一个数组,数组查询是很慢的。
真实的「物理结构」,也许还是像「层次模型」和「网状模型」一样,是复杂的数据结构。
但到底是怎样的数据结构,你都无需关心,你只需把它想象成一张「表」去操作,就连可视化工具,都会帮你把数据可视化成表,来方便你理解。
这个观念的提出,来自于 1970 年 Codd 的一篇论文,A Relational Model of Data for Large Shared Data Banks:
Future users of large data banks must be protected from having to know how the data is organized in the machine (the internal representation).
Activities of users at terminals and most application programs should remain unaffected when the internal representation of data is changed and even when some aspects of the external representation are changed.
—— Codd
Codd 的这种思想,其实就是经济学里提到的:分工产生效能。
程序员们不需要直接和物理结构打交道,只负责告诉数据库,他想做什么,至于数据是如何存储、如何索引,都交给数据库,最终他们看到的就是一张张特别直观、特别好理解的 excel 表格。
而数据库则把维护物理结构的复杂逻辑,交给了自己, 对程序员屏蔽了复杂的实现细节。
开发时写的代码少了,耦合性降低了,数据也不容易损坏,也就提高了生产效率(productive)。
一切能用同样的耗能,带来更多效能的技术,都会被广泛使用。
NoSQL
那后来为什么又有了 NoSQL 呢?
在 RDB 被发明的时代,软件多用于大型企业,比如银行、金融等等,人们对数据的要求非常纯粹:准确、可靠、安全,让数据按照期望,正确的写入,不要给老子算错钱就好,于是有了具有 ACID 特性的事务:原子性、一致性、隔离性和持久性。
那时候用网络的人很少,通过终端来访问客户端的人,更少,自然的,数据库的数据量和访问量都跟现在没法比,一台机器,足矣,最多再来个一主多从:
后来,你知道的,每个人手里都有个手机,每分每秒,都有成千上万的数据,写入你的数据库、从你的数据库被查出,于是有了「分布式」,有了 BASE 和 CAP。这时候,RDB 就会发现,自己之前的那一套 ACID,竟然有点作茧自缚了:
为了保证事务的隔离性,要进行加锁,在分布式的环境下,就要对多台机器的数据进行加锁;
为了保证事务的原子性,在机器 A 的操作和在机器 B 的操作,要么一起成功,要么一起失败;
…...
这些都要去不同节点的机器进行通讯和协调,实现起来非常复杂,而且要付出更多的网络 IO,影响性能。
ACID 在分布式系统上实现起来就会变得难以实现,即使实现了,也要付出很大的性能成本,于是才有了后来的各种「分布式一致性协议」,Paxos、Raft、2PC …… 而 Mysql 也提供了各种方案来实现分布式,当然,这些方案自然是很复杂的,比如 「NDB Cluster」 :
而 NoSQL 则没有这么多承诺,它的一致性,一般都是最终一致性,当然你可以选择强一致,那自然就要付出点性能作为代价,当然你还可以弱一致,这样会更不安全,但是更快,一切取决于你对数据的要求。
除此之外,RDB 的「数据库范式」(Database Schema),也成了限制扩展性的瓶颈。为了避免数据冗余导致的各种问题(占用空间、删除异常、更新异常等等),我们在设计关系模型时,通常都是按照最小单位来设计的。
什么叫最小单位,比如用户有地址和爱好,那么在正确设计的关系模型(比如 3NF)里,这就是三张表:
如果这三张表被分散在不同的机器,那进行关联查询时,就需要多次跨机器的通讯;
而对于 NoSQL,这三类信息,都可以利用 Json 格式的数据,将它们存放在一起:
完整的存储进去,完整的取出来,不需要额外的操作。
NoSQL 比 RDB 有更强的扩展性,可以充分利用分布式系统来提升读写性能和可靠性。
这不是谁设计好坏的问题,而是跟他们要解决的问题有关:RDB 诞生于互联网萌芽的时代,那时数据的准确、可靠是最重要的,而 NoSQL 诞生于互联网快速发展普及的时代,大数据、分布式、扩展性成了数据库的另一个重要特性。
总结一下:
RDB 首先得是准确、可靠,然后才向更高的「可拓展性」发展;
而 NoSQL 生而分布式,可拓展性强,然后才向更高的「准确性」发展。
NoSQL ,not only SQL,其实就是对那种打破了 RDB 严格事务和关系模型约束的那些数据库的泛指,而随着要解决的问题的不同,又诞生了各种各样的 NoSQL。
首先是「列式数据库」(Column-oriented DBMS),数据量上去了,我们想分析网站用户的年龄分布,简单说,就是你需要对同一个特征进行大数据量的分析统计,于是把原来 RDB 的「按行存储」的范式打破,变成了「按列存储」,比如 HBase;
然后你发现有些数据变动不是很大,但是经常需要被查询, 查询时还要关联很多张表,于是你把这些来自不同表的数据,揉成一个大对象,按 key-value 的格式存起来,比如 Redis;
再后来你需要对博客内容进行相关性搜索,传统 RDB 不支持相关性搜索,最重要的,还是扩展性差,增加机器的带来边际效益有限,于是有了「全文搜索引擎」,比如 Elasticsearch;
除此之外,还有「文档数据库」、「图形数据库」……
没有一种数据库是银弹。
总结
这篇文章的题目是「如何选择数据库」,这是困扰很多人的问题,那么多数据库,到底要选什么好?
可是当你问出这样一个问题时,其实你是在问一种「手段」。我现在要做这样一个需求,用什么数据库可以帮我实现它?
但其实你需要的不只是一种「手段」,因为如果对方甩给你一个冷冰冰的名字,Mysql、Elasticsearch、MongoDB,你肯定会问,凭什么?
你需要的,是一种「解决方案」。如果你需要数据十分严格准确,分毫不差,那我会推荐你采用「事务」和「关系模型」来处理数据;如果你需要数据能够被大量读取和写入,那我会推荐你扩展性强的「分布式」;如果你的数据经常是整个读取、整个更新的,那「关系模型」就没有「文档模型」适合你。
「事务」、「关系模型」、「分布式」、「文档模型」等等,这些就是「解决方案」,知道用什么「解决方案」,用哪个数据库,自然水到渠成。
正如一位大牛说的:
设计实践中,要基于需求、业务驱动架构。无论选用 RDB/NoSQL,一定是以需求为导向,最终数据存储方案必然是各种权衡的综合性设计。
用户不会因为你用了 Mysql 或者 MongoDB 而使用你的软件,毕竟绝大多数用户都不知道 Mysql 和 MongoDB 是什么玩意。
是的,NoSQL(非关系型数据库)简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系组成的一个数据组织。 NoSQL最普遍的解释是“非关系型的”,强调Key-Value Stores和文档数据库的优点,而不是单纯的反对RDBMS。
非关系型数据库特点
1.可以处理超大量的数据。
2.运行在便宜的PC服务器集群上。PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。
3.击碎了性能瓶颈。NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。
4.没有过多的操作。
5.支持者来源于社区。因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。
NoSQL,指的是非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的
SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。
NoSQL(NoSQL
= Not Only SQL
),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数
据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
从这一新兴技术中选择一款正确的NoSQL数据库是非常具有挑战性的。比一下网建议在选择时考虑以下因素:
并发控制
并
发控制指的是当多个用户同时更新运行时,用于保护数据库完整性的各种技术。并发机制不正确可能导致脏读、幻读和不可重复读等此类问题。并发控制的目的是保
证一个用户的工作不会对另一个用户的工作产生不合理的影响。在某些情况下,这些措施保证了当用户和其他用户一起操作时,所得的结果和她单独操作时的结果是
一样的。在另一些情况下,这表示用户的工作按预定的方式受其他用户的影响。
封锁
就是事务T在对某个数据对象(例如表、记录等)操作之前,先向系统发出请求,对其加锁。加锁后事务T就对该数据对象有了一定的控制,在事务T释放它的锁之前,其它的事务不能更新此数据对象。
封锁是一次只允许一个用户读取或修改的一种机制,是实现并发控制的一个非常重要的技术。
MVCC
Multi-Version Concurrency Control多版本并发控制,维持一个数据的多个版本使读写操作没有冲突。MVCC优化了数据库并发系统,使系统在有大量并发用户时得到最高的性能,并且可以不用关闭服务器就直接进行热备份。
ACID
指
数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久
性(Durability)。一个支持事务(Transaction)的数据库系统,必需要具有这四种特性,否则在事务过程(Transaction
processing)当中无法保证数据的正确性,交易过程极可能达不到交易方的要求。
None
一些系统不提供原子性。
镜像
数据库镜像是DBMS根据DBA的要求,自动把整个数据库或其中的关键数据复制到另一个磁盘上,每当主数据库更新时,DBMS会自动把更新后的数据复制过去,即DBMS自动保证镜像数据与主数据的一致性。
镜像分为同步和异步。
数据存储
指的是数据的物理特性怎样被存储在数据库中。
磁盘 数据被存储在硬盘驱动器里;
GFS或谷歌文件系统是一个由谷歌开发的专有的分布式文件系统;
Hadoop是Apache软件框架,免费许可下支持数据密集型分布式应用程序;
RAM随机存储器;
插件 可以添加外部插件;
Amazon S3通过Web服务接口提供存储;
BDB:BDB
全称是 “Berkeley DB”,它是MySQL具有事务能力的表类型,由Sleepycat
Software开发。BDB表类型提供了MySQL用户长久期盼的功能,即事务控制能力。在任何RDBMS中,事务控制能力都是一种极其重要和宝贵的功
能。事务控制能力使得我们能够确保一组命令确实已经全部执行成功,或者确保当任何一个命令出现错误时所有命令的执行结果均被退回。
实现语言
实现语言会影响数据库的发展速度。典型的NoSQL数据库是用低级语言如C / C + +编写的。另一方面,那些更高层次的语言如Java,使自定义更容易。
实现语言有:C, C++, Erlang, Java, Python
特性
考虑下列哪一个特点对你的数据库是最重要的:
持久性
可用性
一致性
分区容忍性
证书类型
下面这些许可证是一个不同的开放源码许可的形式:
GPL:通用公共许可证
BSD:伯克利软件分发
MPL:Mozilla公共许可证
EPL:Eclipse公共许可证
IDPL:最初的开发者的公共许可证
LGPL:较宽松通用公共许可证
存储类型
存储类型是NoSQL数据库最大的不同,是决定使用哪款数据库的一个首要指标。
关键字:支持get、put和删除操作
按列存储:相对于传统的按行存储,数据集成容易多了
面向文件系统:存储像是JSON或XML这样的结构化文件,很容易就能从面向对象软件中获取数据。
本期目录
DB-Engines数据库排行榜
新闻快讯
一、RDBMS家族
二、NoSQL家族
三、NewSQL家族
四、时间序列
五、大数据生态圈
六、国产数据库概览
七、云数据库
八、推出dbaplus Newsletter的想法
九、感谢名单
为方便阅读、重点呈现,本期Newsletter(2019年1月)将对各个板块的内容进行精简。需要阅读全文的同学可点击文末 【阅读原文】 或登录
进行下载。
DB-Engines数据库排行榜
以下取自2019年1月的数据,具体信息可以参考,数据仅供参考。
DB-Engines排名的数据依据5个不同的因素:
新闻快讯
1、2018年9月24日,微软公布了SQL Server2019预览版,SQL Server 2019将结合Spark创建统一数据平台。
2、2018年10月5日,ElasticSearch在美国纽约证券交易所上市。
3、亚马逊放弃甲骨文数据库软件,导致最大仓库之一在黄金时段宕机。受此消息影响,亚马逊盘前股价小幅跳水,跌超2%。
4、2018年10月31日,Percona发布了Percona Server 8.0 RC版本,发布对MongoDB 4.0的支持,发布对XtraBackup测试第二个版本。
5、2018年10月31日,Gartner陆续发布了2018年的数据库系列报告,包括《数据库魔力象限》、《数据库核心能力》以及《数据库推荐报告》。
今年的总上榜数据库产品达到了5家,分别来自:阿里云,华为,巨杉数据库,腾讯云,星环 科技 。其中阿里云和巨杉数据库已经连续两年入选。
6、2018年11月初,Neo4j宣布完成E轮8000万美元融资。11月15日,Neo4j宣布企业版彻底闭源:
7、2019年1月8日,阿里巴巴以1.033亿美元(9000万欧元)的价格收购了Apache Flink商业公司DataArtisans。
8、2019年1月11日早间消息,亚马逊宣布推出云数据库软件,亚马逊和MongoDB将会直接竞争。
RDBMS家族
Oracle 发布18.3版本
2018年7月,Oracle Database 18.3通用版开始提供下载。我们可以将Oracle Database 18c视为采用之前发布模式的Oracle Database 12c第2版的第一个补丁集。未来,客户将不再需要等待多年才能用上最新版Oracle数据库,而是每年都可以期待新数据库特性和增强。Database 19c将于2019年Q1率先在Oracle cloud上发布云版本。
Oracle Database 18c及19c部分关键功能:
1、性能
2、多租户,大量功能增强及改进,大幅节省成本和提高敏捷性
3、高可用
4、数据仓库和大数据
MySQL发布8.0.13版本
1、账户管理
经过配置,修改密码时,必须带上原密码。在之前的版本,用户登录之后,就可以修改自己的密码。这种方式存在一定安全风险。比如用户登录上数据库后,中途离开一段时间,那么非法用户可能会修改密码。由参数password_require_current控制。
2、配置
Innodb表必须有主键。在用户没有指定主键时,系统会生成一个默认的主键。但是在主从复制的场景下,默认的主键,会对丛库应用速度带来致命的影响。如果设置sql_require_primary_key,那么数据库会强制用户在创建表、修改表时,加上主键。
3、字段默认值
BLOB、TEXT、GEOMETRY和JSON字段可以指定默认值了。
4、优化器
1)Skip Scan
非前缀索引也可以用了。
之前的版本,任何没有带上f1字段的查询,都没法使用索引。在新的版本中,它可以忽略前面的字段,让这个查询使用到索引。其实现原理就是把(f1 = 1 AND f2 40) 和(f1 = 2 AND f2 40)的查询结果合并。
2)函数索引
之前版本只能基于某个列或者多个列加索引,但是不允许在上面做计算,如今这个限制消除了。
5、SQL语法
GROUP BY ASC和GROUP BY DESC语法已经被废弃,要想达到类似的效果,请使用GROUP BY ORDER BY ASC和GROUP BY ORDER BY DESC。
6、功能变化
1)设置用户变量,请使用SET语句
如下类型语句将要被废弃SELECT @var, @var:=@var+1。
2)新增innodb_fsync_threshold
该变量是控制文件刷新到磁盘的速率,防止磁盘在短时间内饱和。
3)新增会话级临时表空间
在以往的版本中,当执行SQL时,产生的临时表都在全局表空间ibtmp1中,及时执行结束,临时表被释放,空间不会被回收。新版本中,会为session从临时表空间池中分配一个临时表空间,当连接断开时,临时表空间的磁盘空间被回收。
4)在线切换Group Replication的状态
5)新增了group_replication_member_expel_timeout
之前,如果某个节点被怀疑有问题,在5秒检测期结束之后,那么就直接被驱逐出这个集群。即使该节点恢复正常时,也不会再被加入集群。那么,瞬时的故障,会把某些节点驱逐出集群。
group_replication_member_expel_timeout让管理员能更好的依据自身的场景,做出最合适的配置(建议配置时间小于一个小时)。
MariaDB 10.3版本功能展示
1、MariaDB 10.3支持update多表ORDER BY and LIMIT
1)update连表更新,limit语句
update t1 join t2 on t1.id=t2.id set t1.name='hechunyang' limit 3;
MySQL 8.0直接报错
MariaDB 10.3更新成功
2)update连表更新,ORDER BY and LIMIT语句
update t1 join t2 on t1.id=t2.id set t1.name='HEchunyang' order by t1.id DESC limit 3;
MySQL 8.0直接报错
MariaDB 10.3更新成功
参考:
2、MariaDB10.3增补AliSQL补丁——安全执行Online DDL
Online DDL从名字上看很容易误导新手,以为不论什么情况,修改表结构都不会锁表,理想很丰满,现实很骨感,注意这个坑!
有以下两种情况执行DDL操作会锁表的,Waiting for table metadata lock(元数据表锁):
针对第二种情况,MariaDB10.3增补AliSQL补丁-DDL FAST FAIL,让其DDL操作快速失败。
例:
如果线上有某个慢SQL对该表进行操作,可以使用WAIT n(以秒为单位设置等待)或NOWAIT在语句中显式设置锁等待超时,在这种情况下,如果无法获取锁,语句将立即失败。 WAIT 0相当于NOWAIT。
参考:
3、MariaDB Window Functions窗口函数分组取TOP N记录
窗口函数在MariaDB10.2版本里实现,其简化了复杂SQL的撰写,提高了可读性。
参考:
Percona Server发布8.0 GA版本
2018年12月21日,Percona发布了Percona Server 8.0 GA版本。
在支持MySQL8.0社区的基础版上,Percona Server for MySQL 8.0版本中带来了许多新功能:
1、安全性和合规性
2、性能和可扩展性
3、可观察性和可用性
Percona Server for MySQL 8.0中将要被废用功能:
Percona Server for MySQL 8.0中删除的功能:
RocksDB发布V5.17.2版本
2018年10月24日,RocksDB发布V5.17.2版本。
RocksDB是Facebook在LevelDB基础上用C++写的高效内嵌式K/V存储引擎。相比LevelDB,RocksDB提供了Column-Family,TTL,Transaction,Merge等方面的支持。目前MyRocks,TiKV等底层的存储都是基于RocksDB来构建。
PostgreSQL发布11版本
2018年10月18日,PostgreSQL 11发布。
1、PostgreSQL 11的重大增强
2、PostgreSQL 插件动态
1)分布式插件citus发布 8.1
citus是PostgreSQL的一款sharding插件,目前国内苏宁、铁总、探探有较大量使用案例。
2)地理信息插件postgis发布2.5.1
PostGIS是专业的时空数据库插件,在测绘、航天、气象、地震、国土资源、地图等时空专业领域应用广泛。同时在互联网行业也得到了对GIS有性能、功能深度要求的客户青睐,比如共享出行、外卖等客户。
3)时序插件timescale发布1.1.1
timescale是PostgreSQL的一款时序数据库插件,在IoT行业中有非常好的应用。github star数目前有5000多,是一个非常火爆的插件。
4)流计算插件 pipelinedb 正式插件化
Pipelinedb是PostgreSQL的一款流计算插件,使用这个创建可以对高速写入的数据进行实时根据定义的聚合规则进行聚合(支持概率计算),实时根据定义的规则触发事件(支持事件处理函数的自定义)。可用于IoT,监控,FEED实时计算等场景。
3、PostgreSQL衍生开源产品动态
1)agensgraph发布 2.0.0版本
agensgraph是兼容PostgreSQL、opencypher的专业图数据库,适合图式关系的管理。
2)gpdb发布5.15
gpdb是兼容PostgreSQL的mpp数据库,适合OLAP场景。近两年,gpdb一直在追赶PostgreSQL的社区版本,预计很快会追上10的PostgreSQL,在TP方面的性能也会得到显著提升。
3)antdb发布3.2
antdb是以Postgres-XC为基础开发的一款PostgreSQL sharding数据库,亚信主导开发,开源,目前主要服务于亚信自有客户。
4)迁移工具MTK发布52版本
MTK是EDB提供的可以将Oracle、PostgreSQL、MySQL、MSSQL、Sybase数据库迁移到PostgreSQL, PPAS的产品,迁移速度可以达到100万行/s以上。
DB2发布 11.1.4.4版本
DB2最新发布Mod Pack 4 and Fix Pack 4,包含以下几方面的改动及增强:
1、性能
2、高可用
3、管理视图
4、应用开发方面
5、联邦功能
6、pureScale
NoSQL家族
Redis发布5.0.3版本
MongoDB升级更新MongoDB Mobile和MongoDB Stitch
2018年11月21日,MongoDB升级更新MongoDB Mobile和MongoDB Stitch,助力开发人员提升工作效率。
MongoDB 公司日前发布了多项新产品功能,旨在更好地帮助开发人员在世界各地管理数据。通过利用存储在移动设备和后台数据库的数据之间的实时、自动的同步特性,MongoDB Mobile通用版本助力开发人员构建更快捷、反应更迅速的应用程序。此前,这只能通过在移动应用内部安装一个可供选择或限定功能的数据库来实现。
MongoDB Mobile在为客户提供随处运行的自由度方面更进了一步。用户在iOS和安卓终端设备上可拥有MongoDB所有功能,将网络边界扩展到其物联网资产范畴。应用系统还可以使用MongoDB Stitch的软件开发包访问移动客户端或后台数据,帮助开发人员通过他们希望的任意方式查询移动终端数据和物联网数据,包括本地读写、本地JSON存储、索引和聚合。通过Stitch移动同步功能(现可提供beta版),用户可以自动对保存在本地的数据以及后台数据库的数据进行同步。
本期新秀:Cassandra发布3.11.3版本
2018年8月11日,Cassandra发布正式版3.11.3。
Apache Cassandra是一款开源分布式NoSQL数据库系统,使用了基于Google BigTable的数据模型,与面向行(row)的传统关系型数据库或键值存储key-value数据库不同,Cassandra使用的是宽列存储模型(Wide Column Stores)。与BigTable和其模仿者HBase不同,数据并不存储在分布式文件系统如GFS或HDFS中,而是直接存于本地。
Cassandra的系统架构与Amazon DynamoDB类似,是基于一致性哈希的完全P2P架构,每行数据通过哈希来决定应该存在哪个或哪些节点中。集群没有master的概念,所有节点都是同样的角色,彻底避免了整个系统的单点问题导致的不稳定性,集群间的状态同步通过Gossip协议来进行P2P的通信。
3.11.3版本的一些bug fix和改进:
NewSQL家族
TiDB 发布2.1.2版本
2018 年 12 月 22 日,TiDB 发布 2.1.2 版,TiDB-Ansible 相应发布 2.1.2 版本。该版本在 2.1.1 版的基础上,对系统兼容性、稳定性做出了改进。
TiDB 是一款定位于在线事务处理/在线分析处理( HTAP: Hybrid Transactional/Analytical Processing)的融合型数据库产品。除了底层的 RocksDB 存储引擎之外,分布式SQL层、分布式KV存储引擎(TiKV)完全自主设计和研发。
TiDB 完全开源,兼容MySQL协议和语法,可以简单理解为一个可以无限水平扩展的MySQL,并且提供分布式事务、跨节点 JOIN、吞吐和存储容量水平扩展、故障自恢复、高可用等优异的特性;对业务没有任何侵入性,简化开发,利于维护和平滑迁移。
TiDB:
PD:
TiKV:
Tools:
1)TiDB-Lightning
2)TiDB-Binlog
EsgynDB发布R2.5版本
2018年12月22日,EsgynDB R2.5版本正式发布。
作为企业级产品,EsgynDB 2.5向前迈进了一大步,它拥有以下功能和改进:
CockroachDB发布2.1版本
2018年10月30日,CockroachDB正式发布2.1版本,其新增特性如下:
新增企业级特性:
新增SQL特性:
新增内核特性:
Admin UI增强:
时间序列
本期新秀:TimescaleDB发布1.0版本
10月底,TimescaleDB 1.0宣布正式推出,官方表示该版本已可用于生产环境,支持完整SQL和扩展。
TimescaleDB是基于PostgreSQL数据库开发的一款时序数据库,以插件化的形式打包提供,随着PostgreSQL的版本升级而升级,不会因为另立分支带来麻烦。
TimescaleDB架构:
数据自动按时间和空间分片(chunk)
更新亮点:
大数据生态圈
Hadoop发布2.9.2版本
2018年11月中旬,Hadoop在2.9分支上发布了新的2.9.2版本,该版本进行了204个大大小小的变更,主要变更如下:
Greenplum 发布5.15版本
Greenplum最新的5.15版本中发布了流式数据加载工具。
该版本中的Greenplum Streem Server组件已经集成了Kafka流式加载功能,并通过了Confluent官方的集成认证,其支持的主要功能如下:
国产数据库概览
K-DB发布数据库一体机版
2018年11月7日,K-DB发布了数据库一体机版。该版本更新情况如下:
OceanBase迁移服务发布1.0版本
1月4日,OceanBase 正式发布OMS迁移服务1.0版本。
以下内容包含 OceanBase 迁移服务的重要特性和功能:
SequoiaDB发布3.0.1新版本
1、架构
1)完整计算存储分离架构,兼容MySQL协议、语法
计算存储分离体系以松耦合的方式将计算与存储层分别部署,通过标准接口或插件对各个模块和组件进行无缝替换,在计算层与存储层均可实现自由的弹性伸缩。
SequoiaDB巨杉数据库“计算-存储分离”架构详细示意
用户可以根据自身业务特征选择面向交易的SQL解析器(例如MySQL或PGSQL)或面向统计分析的执行引擎(例如SparkSQL)。众所周知,使用不同的SQL优化与执行方式,数据库的访问性能可能会存在上千上万倍的差距。计算存储分离的核心思想便是在数据存储层面进行一体化存储,在计算层面则利用每种执行引擎的特点针对不同业务场景进行选择和优化,用户可以在存储层进行逻辑与物理的隔离,将面向高频交易的前端业务与面向高吞吐量的统计分析使用不同的硬件进行存储,确保在多类型数据访问时互不干扰,以真正达到生产环境可用的多租户与HTAP能力。
2、其他更新信息
1)接口变更:
2)主要特性:
云数据库
本期新秀:腾讯发布数据库CynosDB,开启公测
1、News
1)腾讯云数据库MySQL2018年重大更新:
2)腾讯云数据库MongoDB2018年重大更新:
3)腾讯云数据库Redis/CKV+2018年重大更新:
4)腾讯云数据库CTSDB2018年重大更新:
2、Redis 4.0集群版商业化上线
2018年10月,腾讯云数据库Redis 4.0集群版完成邀测、公测、商业化三个迭代,在广州、上海、北京正式全量商业化上线。
产品特性:
使用场景:
官网文档:
3、腾讯自研数据库CynosDB发布,开启公测
2018年11月22日,腾讯云召开新一代自研数据库CynosDB发布会,业界第一款全面兼容市面上两大最主流的开源数据库MySQL和PostgreSQL的高性能企业级分布式云数据库。
本期新秀:京东云DRDS发布1.0版本
12月24日,京东云分布式关系型数据库DRDS正式发布1.0版本。
DRDS是京东云精心自研的数据库中间件产品,获得了2018年 ”可信云技术创新奖”。DRDS可实现海量数据下的自动分库分表,具有高性能,分布式,弹性升级,兼容MySQL等优点,适用于高并发、大规模数据的在线交易, 历史 数据查询,自动数据分片等业务场景,历经多次618,双十一的考验,已经在京东集团内大规模使用。
京东云DRDS产品有以下主要特性
1)自动分库分表
通过简单的定义即可自动实现分库分表,将数据实际存放在多个MySQL实例的数据库中,但呈现给应用程序的依旧是一张表,对业务透明,应用程序几乎无需改动,实现了对数据库存储和处理能力的水平扩展。
2)分布式架构
基于分布式架构的集群方案,多个对等节点同时对外提供服务,不但可有效规避服务的单点故障,而且更加容易扩展。
3)超强性能
具有极高的处理能力,双节点即可支持数万QPS,满足用户超大规模处理能力的需求。
4)兼容MySQL
兼容绝大部分MySQL语法,包括MySQL语法、数据类型、索引、常用函数、排序、关联等DDL,DML语句,使用成本低。
参考链接:
RadonDB发布1.0.3版本
2018年12月26日,MyNewSQL领域的RadonDB云数据库发布1.0.3版本。
推出dbaplus Newsletter的想法
dbaplus Newsletter旨在向广大技术爱好者提供数据库行业的最新技术发展趋势,为社区的技术发展提供一个统一的发声平台。为此,我们策划了RDBMS、NoSQL、NewSQL、时间序列、大数据生态圈、国产数据库、云数据库等几个版块。
我们不以商业宣传为目的,不接受任何商业广告宣传,严格审查信息源的可信度和准确性,力争为大家提供一个纯净的技术学习环境,欢迎大家监督指正。
至于Newsletter发布的周期,目前计划是每三个月左右会做一次跟进, 下期计划时间是2019年4月14日~4月25日, 如果有相关的信息提供请发送至邮箱:newsletter@dbaplus.cn
感谢名单
最后要感谢那些提供宝贵信息和建议的专家朋友,排名不分先后。
往期回顾:
↓↓别忘了点这里下载 2019年1月 完整版Newsletter 哦~
当然是mysql+nosql了,阿里现在的大部分构架都是这样的,oracle是阿里跳过的大坑
package basic;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBC {
public void findAll() {
try {
// 获得数据库驱动
//由于长时间不写,驱动名和URL都忘记了,不知道对不对,你应该知道的,自己改一下的哈
String url = "jdbc:oracle:thin:@localhost:1521:XE";
String userName = "system";
String password = "system";
Class.forName("oracle.jdbc.driver.OracleDriver");
// 创建连接
Connection conn = DriverManager.getConnection(url, userName,
password);
// 新建发送sql语句的对象
Statement st = conn.createStatement();
// 执行sql
String sql = "select * from users";
ResultSet rs = st.executeQuery(sql);
// 处理结果
while(rs.next()){
//这个地方就是给你的封装类属性赋值
System.out.println("UserName:"+rs.getString(0));
}
// 关闭连接
rs.close();
st.close();
conn.close();
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public void delete(){
try {
//步骤还是那六个步骤,前边的两步是一样的
String url = "jdbc:oracle:thin:@localhost:1521:XE";
String userName = "system";
String password = "system";
Class.forName("oracle.jdbc.driver.OracleDriver");
Connection conn = DriverManager.getConnection(url,userName,password);
//这里的发送sql语句的对象是PreparedStatement,成为预处理sql对象,因为按条件删除是需要不定值的
String sql = "delete from users where id = ?";
PreparedStatement ps = conn.prepareStatement(sql);
ps.setInt(0, 1);
int row = ps.executeUpdate();
if(row!=0){
System.out.println("删除成功!");
}
// 关闭连接
rs.close();
st.close();
conn.close();
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款