Kubernetes如何通过DevicePlugins来使用NVIDIAGPU

本篇文章为大家展示了Kubernetes如何通过Device Plugins来使用NVIDIA GPU,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

创新互联公司专注于企业全网整合营销推广、网站重做改版、谢家集网站定制设计、自适应品牌网站建设、HTML5建站商城开发、集团公司官网建设、外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为谢家集等各大城市提供网站开发制作服务。

Device Plugins

Device Pulgins在Kubernetes 1.10中是beta特性,开始于Kubernetes 1.8,用来给第三方设备厂商通过插件化的方式将设备资源对接到Kubernetes,给容器提供Extended Resources。

通过Device Plugins方式,用户不需要改Kubernetes的代码,由第三方设备厂商开发插件,实现Kubernetes Device Plugins的相关接口即可。

目前关注度比较高的Device Plugins实现有:

  • Nvidia提供的GPU插件:NVIDIA device plugin for Kubernetes

  • 高性能低延迟RDMA卡插件:RDMA device plugin for Kubernetes

  • 低延迟Solarflare万兆网卡驱动:Solarflare Device Plugin

Device plugins启动时,对外暴露几个gRPC Service提供服务,并通过/var/lib/kubelet/device-plugins/kubelet.sock向kubelet进行注册。

Device Plugins Registration

  • 在Kubernetes 1.10之前的版本,默认disable DevicePlugins,用户需要在Feature Gate中enable。

  • 在Kubernetes 1.10,默认enable DevicePlugins,用户可以在Feature Gate中disable it。

  • 当DevicePlugins Feature Gate enable,kubelet就会暴露一个Register gRPC接口。Device Plugins通过调用Register接口完成Device的注册。

  • Register接口描述如下:

    	pkg/kubelet/apis/deviceplugin/v1beta1/api.pb.go:440
    	type RegistrationServer interface {
    		Register(context.Context, *RegisterRequest) (*Empty, error)
    	}
    
    
    	pkg/kubelet/apis/deviceplugin/v1beta1/api.pb.go:87
    	type RegisterRequest struct {
    		// Version of the API the Device Plugin was built against
    		Version string `protobuf:"bytes,1,opt,name=version,proto3" json:"version,omitempty"`
    		// Name of the unix socket the device plugin is listening on
    		// PATH = path.Join(DevicePluginPath, endpoint)
    		Endpoint string `protobuf:"bytes,2,opt,name=endpoint,proto3" json:"endpoint,omitempty"`
    		// Schedulable resource name. As of now it's expected to be a DNS Label
    		ResourceName string `protobuf:"bytes,3,opt,name=resource_name,json=resourceName,proto3" json:"resource_name,omitempty"`
    		// Options to be communicated with Device Manager
    		Options *DevicePluginOptions `protobuf:"bytes,4,opt,name=options" json:"options,omitempty"`
    	}

  • RegisterRequest要求的参数如下:

    • 对于nvidia gpu,只有一个PreStartRequired选项,表示每个Container启动前是否要调用Device Plugin的PreStartContainer接口(是Kubernetes 1.10中Device Plugin Interface接口之一),默认为false。

      	vendor/k8s.io/kubernetes/pkg/kubelet/apis/deviceplugin/v1beta1/api.pb.go:71
      	func (m *NvidiaDevicePlugin) GetDevicePluginOptions(context.Context, *pluginapi.Empty) (*pluginapi.DevicePluginOptions, error) {
      		return &pluginapi.DevicePluginOptions{}, nil
      	}
      
      	github.com/NVIDIA/k8s-device-plugin/server.go:80
      	type DevicePluginOptions struct {
      		// Indicates if PreStartContainer call is required before each container start
      		PreStartRequired bool `protobuf:"varint,1,opt,name=pre_start_required,json=preStartRequired,proto3" json:"pre_start_required,omitempty"`
      	}

    • Version, 目前有v1alpha,v1beta1两个版本。

    • Endpoint, 表示device plugin暴露的socket名称,Register时会根据Endpoint生成plugin的socket放在/var/lib/kubelet/device-plugins/目录下,比如Nvidia GPU Device Plugin对应/var/lib/kubelet/device-plugins/nvidia.sock

    • ResourceName, 须按照Extended Resource Naming Scheme格式vendor-domain/resource,比如nvidia.com/gpu

    • DevicePluginOptions, 作为kubelet与device plugin通信时的额外参数传递。

  • 前面提到Device Plugin Interface目前有v1alpha, v1beta1两个版本,每个版本对应的接口如下:

    • /v1beta1.Registration/Register

      	/v1beta1.Registration/Register
      
      	pkg/kubelet/apis/deviceplugin/v1beta1/api.pb.go:466
      	var _Registration_serviceDesc = grpc.ServiceDesc{
      		ServiceName: "v1beta1.Registration",
      		HandlerType: (*RegistrationServer)(nil),
      		Methods: []grpc.MethodDesc{
      			{
      				MethodName: "Register",
      				Handler:    _Registration_Register_Handler,
      			},
      		},
      		Streams:  []grpc.StreamDesc{},
      		Metadata: "api.proto",
      	}

    • /v1beta1.DevicePlugin/ListAndWatch

    • /v1beta1.DevicePlugin/Allocate

    • /v1beta1.DevicePlugin/PreStartContainer

    • /v1beta1.DevicePlugin/GetDevicePluginOptions

      	pkg/kubelet/apis/deviceplugin/v1beta1/api.pb.go:665
      	var _DevicePlugin_serviceDesc = grpc.ServiceDesc{
      		ServiceName: "v1beta1.DevicePlugin",
      		HandlerType: (*DevicePluginServer)(nil),
      		Methods: []grpc.MethodDesc{
      			{
      				MethodName: "GetDevicePluginOptions",
      				Handler:    _DevicePlugin_GetDevicePluginOptions_Handler,
      			},
      			{
      				MethodName: "Allocate",
      				Handler:    _DevicePlugin_Allocate_Handler,
      			},
      			{
      				MethodName: "PreStartContainer",
      				Handler:    _DevicePlugin_PreStartContainer_Handler,
      			},
      		},
      		Streams: []grpc.StreamDesc{
      			{
      				StreamName:    "ListAndWatch",
      				Handler:       _DevicePlugin_ListAndWatch_Handler,
      				ServerStreams: true,
      			},
      		},
      		Metadata: "api.proto",
      	}

    • /deviceplugin.Registration/Register

      	pkg/kubelet/apis/deviceplugin/v1alpha/api.pb.go:374
      	var _Registration_serviceDesc = grpc.ServiceDesc{
      		ServiceName: "deviceplugin.Registration",
      		HandlerType: (*RegistrationServer)(nil),
      		Methods: []grpc.MethodDesc{
      			{
      				MethodName: "Register",
      				Handler:    _Registration_Register_Handler,
      			},
      		},
      		Streams:  []grpc.StreamDesc{},
      		Metadata: "api.proto",
      	}

    • /deviceplugin.DevicePlugin/Allocate

    • /deviceplugin.DevicePlugin/ListAndWatch

      	pkg/kubelet/apis/deviceplugin/v1alpha/api.pb.go:505
      	var _DevicePlugin_serviceDesc = grpc.ServiceDesc{
      		ServiceName: "deviceplugin.DevicePlugin",
      		HandlerType: (*DevicePluginServer)(nil),
      		Methods: []grpc.MethodDesc{
      			{
      				MethodName: "Allocate",
      				Handler:    _DevicePlugin_Allocate_Handler,
      			},
      		},
      		Streams: []grpc.StreamDesc{
      			{
      				StreamName:    "ListAndWatch",
      				Handler:       _DevicePlugin_ListAndWatch_Handler,
      				ServerStreams: true,
      			},
      		},
      		Metadata: "api.proto",
      	}

    • v1alpha:

    • v1beta1:

  • 当Device Plugin成功注册后,它将通过ListAndWatch向kubelet发送它管理的device列表,kubelet收到数据后通过API Server更新etcd中对应node的status中。

  • 然后用户就能在Container Spec request中请求对应的device,注意以下限制:

    • Extended Resource只支持请求整数个device,不支持小数点。

    • 不支持超配,即Resource QoS只能是Guaranteed。

    • 同一块Device不能多个Containers共享。

Device Plugins Workflow

Device Plugins的工作流如下:

  • 初始化:Device Plugin启动后,进行一些插件特定的初始化工作以确定对应的Devices处于Ready状态,对于Nvidia GPU,就是加载NVML Library。

  • 启动gRPC服务:通过/var/lib/kubelet/device-plugins/${Endpoint}.sock对外暴露gRPC服务,不同的API Version对应不同的服务接口,前面已经提过,下面是每个接口的描述。

    • ListAndWatch

    • Allocate

    • GetDevicePluginOptions

    • PreStartContainer

      	pkg/kubelet/apis/deviceplugin/v1beta1/api.proto
      	// DevicePlugin is the service advertised by Device Plugins
      	service DevicePlugin {
      		// GetDevicePluginOptions returns options to be communicated with Device
      	        // Manager
      		rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {}
      
      		// ListAndWatch returns a stream of List of Devices
      		// Whenever a Device state change or a Device disapears, ListAndWatch
      		// returns the new list
      		rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}
      
      		// Allocate is called during container creation so that the Device
      		// Plugin can run device specific operations and instruct Kubelet
      		// of the steps to make the Device available in the container
      		rpc Allocate(AllocateRequest) returns (AllocateResponse) {}
      
          // PreStartContainer is called, if indicated by Device Plugin during registeration phase,
          // before each container start. Device plugin can run device specific operations
          // such as reseting the device before making devices available to the container
      		rpc PreStartContainer(PreStartContainerRequest) returns (PreStartContainerResponse) {}
      	}

    • ListAndWatch

    • Allocate

      	pkg/kubelet/apis/deviceplugin/v1alpha/api.proto
      	// DevicePlugin is the service advertised by Device Plugins
      	service DevicePlugin {
      		// ListAndWatch returns a stream of List of Devices
      		// Whenever a Device state changes or a Device disappears, ListAndWatch
      		// returns the new list
      		rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}
      
      		// Allocate is called during container creation so that the Device
      		// Plugin can run device specific operations and instruct Kubelet
      		// of the steps to make the Device available in the container
      		rpc Allocate(AllocateRequest) returns (AllocateResponse) {}
      	}

    • v1alpha

    • v1beta1

  • Device Plugin通过/var/lib/kubelet/device-plugins/kubelet.sock向kubelet进行注册。

  • 注册成功后,Device Plugin就正式进入了Serving模式,提供前面提到的gRPC接口调用服务,下面是v1beta1的每个接口对应的具体分析:

    下面是struct Device的GPU Sample:

    struct Device {
        ID: "GPU-fef8089b-4820-abfc-e83e-94318197576e",
        State: "Healthy",
    }

     

    • PreStartContainer is expected to be called before each container start if indicated by plugin during registration phase.

    • PreStartContainer allows kubelet to pass reinitialized devices to containers.

    • PreStartContainer allows Device Plugin to run device specific operations on the Devices requested.

      	type PreStartContainerRequest struct {
      		DevicesIDs []string `protobuf:"bytes,1,rep,name=devicesIDs" json:"devicesIDs,omitempty"`
      	}
      
      	// PreStartContainerResponse will be send by plugin in response to PreStartContainerRequest
      	type PreStartContainerResponse struct {
      	}

    • Allocate is expected to be called during pod creation since allocation failures for any container would result in pod startup failure.

    • Allocate allows kubelet to exposes additional artifacts in a pod's environment as directed by the plugin.

    • Allocate allows Device Plugin to run device specific operations on the Devices requested

      	type AllocateRequest struct {
      		ContainerRequests []*ContainerAllocateRequest `protobuf:"bytes,1,rep,name=container_requests,json=containerRequests" json:"container_requests,omitempty"`
      	}
      
      	type ContainerAllocateRequest struct {
      		DevicesIDs []string `protobuf:"bytes,1,rep,name=devicesIDs" json:"devicesIDs,omitempty"`
      	}
      
      	// AllocateResponse includes the artifacts that needs to be injected into
      	// a container for accessing 'deviceIDs' that were mentioned as part of
      	// 'AllocateRequest'.
      	// Failure Handling:
      	// if Kubelet sends an allocation request for dev1 and dev2.
      	// Allocation on dev1 succeeds but allocation on dev2 fails.
      	// The Device plugin should send a ListAndWatch update and fail the
      	// Allocation request
      	type AllocateResponse struct {
      		ContainerResponses []*ContainerAllocateResponse `protobuf:"bytes,1,rep,name=container_responses,json=containerResponses" json:"container_responses,omitempty"`
      	}
      
      	type ContainerAllocateResponse struct {
      		// List of environment variable to be set in the container to access one of more devices.
      		Envs map[string]string `protobuf:"bytes,1,rep,name=envs" json:"envs,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"`
      		// Mounts for the container.
      		Mounts []*Mount `protobuf:"bytes,2,rep,name=mounts" json:"mounts,omitempty"`
      		// Devices for the container.
      		Devices []*DeviceSpec `protobuf:"bytes,3,rep,name=devices" json:"devices,omitempty"`
      		// Container annotations to pass to the container runtime
      		Annotations map[string]string `protobuf:"bytes,4,rep,name=annotations" json:"annotations,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"`
      	}
      
      	// DeviceSpec specifies a host device to mount into a container.
      	type DeviceSpec struct {
      		// Path of the device within the container.
      		ContainerPath string `protobuf:"bytes,1,opt,name=container_path,json=containerPath,proto3" json:"container_path,omitempty"`
      		// Path of the device on the host.
      		HostPath string `protobuf:"bytes,2,opt,name=host_path,json=hostPath,proto3" json:"host_path,omitempty"`
      		// Cgroups permissions of the device, candidates are one or more of
      		// * r - allows container to read from the specified device.
      		// * w - allows container to write to the specified device.
      		// * m - allows container to create device files that do not yet exist.
      		Permissions string `protobuf:"bytes,3,opt,name=permissions,proto3" json:"permissions,omitempty"`
      	}

    • AllocateRequest就是DeviceID列表。

    • AllocateResponse包括需要注入到Container里面的Envs、Devices的挂载信息(包括device的cgroup permissions)以及自定义的Annotations。

    • Allocate:Device Plugin执行device-specific操作,返回AllocateResponse给kubelet,kubelet再传给dockerd,由dockerd(调用nvidia-docker)在创建容器时分配device时使用。下面是这个接口的Request和Response的描述。

    • PreStartContainer

    • GetDevicePluginOptions: 目前只有PreStartRequired这一个field。

      type DevicePluginOptions struct {
      	// Indicates if PreStartContainer call is required before each container start
      	PreStartRequired bool `protobuf:"varint,1,opt,name=pre_start_required,json=preStartRequired,proto3" json:"pre_start_required,omitempty"`
      }

    • ListAndWatch:监控对应Devices的状态变更或者Disappear事件,返回ListAndWatchResponse给kubelet, ListAndWatchResponse就是Device列表。

      	type ListAndWatchResponse struct {
      		Devices []*Device `protobuf:"bytes,1,rep,name=devices" json:"devices,omitempty"`
      	}
      
      	type Device struct {
      		// A unique ID assigned by the device plugin used
      		// to identify devices during the communication
      		// Max length of this field is 63 characters
      		ID string `protobuf:"bytes,1,opt,name=ID,json=iD,proto3" json:"ID,omitempty"`
      		// Health of the device, can be healthy or unhealthy, see constants.go
      		Health string `protobuf:"bytes,2,opt,name=health,proto3" json:"health,omitempty"`
      	}

异常处理

  • 每次kubelet启动(重启)时,都会将/var/lib/kubelet/device-plugins下的所有sockets文件删除。

  • Device Plugin要负责监测自己的socket被删除,然后进行重新注册,重新生成自己的socket。

  • 当plugin socket被误删,Device Plugin该怎么办?

我们看看Nvidia Device Plugin是怎么处理的,相关的代码如下:

github.com/NVIDIA/k8s-device-plugin/main.go:15

func main() {
	...
	
	log.Println("Starting FS watcher.")
	watcher, err := newFSWatcher(pluginapi.DevicePluginPath)
	
    ...

	restart := true
	var devicePlugin *NvidiaDevicePlugin

L:
	for {
		if restart {
			if devicePlugin != nil {
				devicePlugin.Stop()
			}

			devicePlugin = NewNvidiaDevicePlugin()
			if err := devicePlugin.Serve(); err != nil {
				log.Println("Could not contact Kubelet, retrying. Did you enable the device plugin feature gate?")
				log.Printf("You can check the prerequisites at: https://github.com/NVIDIA/k8s-device-plugin#prerequisites")
				log.Printf("You can learn how to set the runtime at: https://github.com/NVIDIA/k8s-device-plugin#quick-start")
			} else {
				restart = false
			}
		}

		select {
		case event := <-watcher.Events:
			if event.Name == pluginapi.KubeletSocket && event.Op&fsnotify.Create == fsnotify.Create {
				log.Printf("inotify: %s created, restarting.", pluginapi.KubeletSocket)
				restart = true
			}

		case err := <-watcher.Errors:
			log.Printf("inotify: %s", err)

		case s := <-sigs:
			switch s {
			case syscall.SIGHUP:
				log.Println("Received SIGHUP, restarting.")
				restart = true
			default:
				log.Printf("Received signal \"%v\", shutting down.", s)
				devicePlugin.Stop()
				break L
			}
		}
	}
}	
  • 通过fsnotify.Watcher监控/var/lib/kubelet/device-plugins/目录。

  • 如果fsnotify.Watcher的Events Channel收到Create kubelet.sock事件(说明kubelet发生重启),则会触发Nvidia Device Plugin的重启。

  • Nvidia Device Plugin重启的逻辑是:先检查devicePlugin对象是否为空(说明完成了Nvidia Device Plugin的初始化):

    • 如果不为空,则先停止Nvidia Device Plugin的gRPC Server。

    • 然后调用NewNvidiaDevicePlugin()重建一个新的DevicePlugin实例。

    • 调用Serve()启动gRPC Server,并先kubelet注册自己。

因此,这其中只监控了kubelet.sock的Create事件,能很好处理kubelet重启的问题,但是并没有监控自己的socket是否被删除的事件。所以,如果Nvidia Device Plugin的socket被误删了,那么将会导致kubelet无法与该节点的Nvidia Device Plugin进行socket通信,则意味着Device Plugin的gRPC接口都无法调通:

  • 无法ListAndWatch该节点上的Device列表、健康状态,Devices信息无法同步。

  • 无法Allocate Device,导致容器创建失败。

因此,建议加上对自己device plugin socket的删除事件的监控,一旦监控到删除,则应该触发restart。

select {
    case event := <-watcher.Events:
    	if event.Name == pluginapi.KubeletSocket && event.Op&fsnotify.Create == fsnotify.Create {
    		log.Printf("inotify: %s created, restarting.", pluginapi.KubeletSocket)
    		restart = true
    	}
    	
    	// 增加对nvidia.sock的删除事件监控
    	if event.Name == serverSocket && event.Op&fsnotify.Delete == fsnotify.Delete {
    		log.Printf("inotify: %s deleted, restarting.", serverSocket)
    		restart = true
    	}
    	
    	...
}

Extended Resources

  • Device Plugin是通过Extended Resources来expose宿主机上的资源的,Kubernetes内置的Resources都是隶属于kubernetes.io domain的,因此Extended Resource不允许advertise在kubernetes.io domain下。

  • Node-level Extended Resource

    注意:~1 is the encoding for the character / in the patch path。

    • 给API Server提交PATCH请求,给node的status.capacity添加新的资源名称和数量;

    • kubelet通过定期更新node status.allocatable到API Server,这其中就包括事先给node打PATCH新加的资源。之后请求了新加资源的Pod就会被scheduler根据node status.allocatable进行FitResources Predicate甩选node。

    • 注意:kubelet通过--node-status-update-frequency配置定期更新间隔,默认10s。因此,当你提交完PATCH后,最坏情况下可能要等待10s左右的时间才能被scheduler发现并使用该资源。

    • Device plugin管理的资源

    • 其他资源

      curl --header "Content-Type: application/json-patch+json" \
      --request PATCH \
      --data '[{"op": "add", "path": "/status/capacity/example.com~1foo", "value": "5"}]' \
      http://k8s-master:8080/api/v1/nodes/k8s-node-1/status

  • Cluster-level Extended Resources

    • 通常集群级的Extended Resources是给scheduler extender使用的,用来做Resources的配额管理。

    • 当Pod请求的resource中包含该extended resources时,default scheduler才会将这个Pod发给对应的scheduler extender进行二次调度。

    • ignoredByScheduler field如果设置为true,则default scheduler将不会对该资源进行PodFitsResources预选检查,通常都会设置为true,因为Cluster-level不是跟node相关的,不适合进行PodFitResources对Node资源进行检查。

      {
        "kind": "Policy",
        "apiVersion": "v1",
        "extenders": [
          {
            "urlPrefix":"",
            "bindVerb": "bind",
            "ManagedResources": [
              {
                "name": "example.com/foo",
                "ignoredByScheduler": true
              }
            ]
          }
        ]
      }

  • API Server限制了Extender Resources只能为整数,比如2,2000m,2Ki,不能为1.5, 1500m。

  • Contaienr resources filed中只配置的Extended Resources必须是Guaranteed QoS。即要么只显示设置了limits(此时requests默认同limits),要么requests和limit显示配置一样。

Scheduler GPU

https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/

这里我们只讨论Kubernetes 1.10中如何调度使用GPU。

在Kubernetes 1.8之前,官方还是建议enable alpha gate feature: Accelerators,通过请求resource alpha.kubernetes.io/nvidia-gpu来使用gpu,并且要求容器挂载Host上的nvidia lib和driver到容器内。这部分内容,请参考我的博文:如何在Kubernetes集群中利用GPU进行AI训练。

  • 从Kubernetes 1.8开始,官方推荐使用Device Plugins方式来使用GPU。

  • 需要在Node上pre-install NVIDIA Driver,并建议通过Daemonset部署NVIDIA Device Plugin,完成后Kubernetes才能发现nvidia.com/gpu。

  • 因为device plugin通过extended resources来expose gpu resource的,所以在container请求gpu资源的时候要注意resource QoS为Guaranteed。

  • Containers目前仍然不支持共享同一块gpu卡。每个Container可以请求多块gpu卡,但是不支持gpu fraction。

使用官方nvidia driver除了以上注意事项之外,还需注意:

  • Node上需要pre-install nvidia docker 2.0,并使用nvidia docker替换runC作为docker的默认runtime。

  • 在CentOS上,参考如下方式安装nvidia docker 2.0 :

    	# Add the package repositories
    	distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
    	curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | \
    	  sudo tee /etc/yum.repos.d/nvidia-docker.repo
    
    	# Install nvidia-docker2 and reload the Docker daemon configuration
    	sudo yum install -y nvidia-docker2
    	sudo pkill -SIGHUP dockerd
    
    	# Test nvidia-smi with the latest official CUDA image
    	docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi

  • 以上工作都完成后,Container就可以像请求buit-in resources一样请求gpu资源了:

    	apiVersion: v1
    	kind: Pod
    	metadata:
    	  name: cuda-vector-add
    	spec:
    	  restartPolicy: OnFailure
    	  containers:
    	    - name: cuda-vector-add
    	      # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
    	      image: "k8s.gcr.io/cuda-vector-add:v0.1"
    	      resources:
    	        limits:
    	          nvidia.com/gpu: 2 # requesting 2 GPU

使用NodeSelector区分不同型号的GPU服务器

如果你的集群中存在不同型号的GPU服务器,比如nvidia tesla k80, p100, v100等,而且不同的训练任务需要匹配不同的GPU型号,那么先给Node打上对应的Label:

# Label your nodes with the accelerator type they have.
kubectl label nodes  accelerator=nvidia-tesla-k80
kubectl label nodes  accelerator=nvidia-tesla-p100

Pod中通过NodeSelector来指定对应的GPU型号:

apiVersion: v1
kind: Pod
metadata:
  name: cuda-vector-add
spec:
  restartPolicy: OnFailure
  containers:
    - name: cuda-vector-add
      # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
      image: "k8s.gcr.io/cuda-vector-add:v0.1"
      resources:
        limits:
          nvidia.com/gpu: 1
  nodeSelector:
    accelerator: nvidia-tesla-p100 # or nvidia-tesla-k80 etc.

思考:其实仅仅使用NodeSelector是不能很好解决这个问题的,这要求所有的pod都要加上对应的NodeSelector。对于V100这样的昂贵稀有的GPU卡,通常还要求不能让别的训练任务使用,只给某些算法训练使用,这个时候我们可以通过给Node打上对应的Taint,给需要的Pod的打上对应Toleration就能完美满足需求了。

Deploy

  • 建议通过Daemonset来部署Device Plugin,方便实现failover。

  • Device Plugin Pod必须具有privileged特权才能访问/var/lib/kubelet/device-plugins

  • Device Plugin Pod需将宿主机的hostpath /var/lib/kubelet/device-plugins挂载到容器内相同的目录。

kubernetes 1.8

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
  name: nvidia-device-plugin-daemonset
spec:
  template:
    metadata:
      labels:
        name: nvidia-device-plugin-ds
    spec:
      containers:
      - image: nvidia/k8s-device-plugin:1.8
        name: nvidia-device-plugin-ctr
        securityContext:
          privileged: true
        volumeMounts:
          - name: device-plugin
            mountPath: /var/lib/kubelet/device-plugins
      volumes:
        - name: device-plugin
          hostPath:
            path: /var/lib/kubelet/device-plugins

kubernetes 1.10

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
  name: nvidia-device-plugin-daemonset
  namespace: kube-system
spec:
  template:
    metadata:
      # Mark this pod as a critical add-on; when enabled, the critical add-on scheduler
      # reserves resources for critical add-on pods so that they can be rescheduled after
      # a failure.  This annotation works in tandem with the toleration below.
      annotations:
        scheduler.alpha.kubernetes.io/critical-pod: ""
      labels:
        name: nvidia-device-plugin-ds
    spec:
      tolerations:
      # Allow this pod to be rescheduled while the node is in "critical add-ons only" mode.
      # This, along with the annotation above marks this pod as a critical add-on.
      - key: CriticalAddonsOnly
        operator: Exists
      containers:
      - image: nvidia/k8s-device-plugin:1.10
        name: nvidia-device-plugin-ctr
        securityContext:
          privileged: true
        volumeMounts:
          - name: device-plugin
            mountPath: /var/lib/kubelet/device-plugins
      volumes:
        - name: device-plugin
          hostPath:
            path: /var/lib/kubelet/device-plugins

关于Kubernetes对critical pod的处理,越来越有意思了,找个时间单独写个博客再详细聊这个。

Device Plugins原理图

Kubernetes如何通过Device Plugins来使用NVIDIA GPU

上述内容就是Kubernetes如何通过Device Plugins来使用NVIDIA GPU,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。


当前题目:Kubernetes如何通过DevicePlugins来使用NVIDIAGPU
链接分享:http://lszwz.com/article/gidggd.html

其他资讯

售后响应及时

7×24小时客服热线

数据备份

更安全、更高效、更稳定

价格公道精准

项目经理精准报价不弄虚作假

合作无风险

重合同讲信誉,无效全额退款