nosql发展历程,nosql的技术特点

什么是nosql非结构化数据库

基本含义NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。NoSQLNoSQL数据库的四大分类键值(Key-Value)存储数据库这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。[3] 举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.列存储数据库。这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak.文档型数据库文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可 以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。图形(Graph)数据库图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。[2] 如:Neo4J, InfoGrid, Infinite Graph.因此,我们总结NoSQL数据库在以下的这几种情况下比较适用:1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。

创新互联建站专注于做网站、网站设计、网页设计、网站制作、网站开发。公司秉持“客户至上,用心服务”的宗旨,从客户的利益和观点出发,让客户在网络营销中找到自己的驻足之地。尊重和关怀每一位客户,用严谨的态度对待客户,用专业的服务创造价值,成为客户值得信赖的朋友,为客户解除后顾之忧。

大数据时代发展历程是什么?

大数据技术发展史:大数据的前世今生

今天我们常说的大数据技术,其实起源于Google在2004年前后发表的三篇论文,也就是我们经常听到的“三驾马车”,分别是分布式文件系统GFS、大数据分布式计算框架MapReduce和NoSQL数据库系统BigTable。

你知道,搜索引擎主要就做两件事情,一个是网页抓取,一个是索引构建,而在这个过程中,有大量的数据需要存储和计算。这“三驾马车”其实就是用来解决这个问题的,你从介绍中也能看出来,一个文件系统、一个计算框架、一个数据库系统。

现在你听到分布式、大数据之类的词,肯定一点儿也不陌生。但你要知道,在2004年那会儿,整个互联网还处于懵懂时代,Google发布的论文实在是让业界为之一振,大家恍然大悟,原来还可以这么玩。

因为那个时间段,大多数公司的关注点其实还是聚焦在单机上,在思考如何提升单机的性能,寻找更贵更好的服务器。而Google的思路是部署一个大规模的服务器集群,通过分布式的方式将海量数据存储在这个集群上,然后利用集群上的所有机器进行数据计算。 这样,Google其实不需要买很多很贵的服务器,它只要把这些普通的机器组织到一起,就非常厉害了。

当时的天才程序员,也是Lucene开源项目的创始人Doug Cutting正在开发开源搜索引擎Nutch,阅读了Google的论文后,他非常兴奋,紧接着就根据论文原理初步实现了类似GFS和MapReduce的功能。

两年后的2006年,Doug Cutting将这些大数据相关的功能从Nutch中分离了出来,然后启动了一个独立的项目专门开发维护大数据技术,这就是后来赫赫有名的Hadoop,主要包括Hadoop分布式文件系统HDFS和大数据计算引擎MapReduce。

当我们回顾软件开发的历史,包括我们自己开发的软件,你会发现,有的软件在开发出来以后无人问津或者寥寥数人使用,这样的软件其实在所有开发出来的软件中占大多数。而有的软件则可能会开创一个行业,每年创造数百亿美元的价值,创造百万计的就业岗位,这些软件曾经是Windows、Linux、Java,而现在这个名单要加上Hadoop的名字。

如果有时间,你可以简单浏览下Hadoop的代码,这个纯用Java编写的软件其实并没有什么高深的技术难点,使用的也都是一些最基础的编程技巧,也没有什么出奇之处,但是它却给社会带来巨大的影响,甚至带动一场深刻的科技革命,推动了人工智能的发展与进步。

我觉得,我们在做软件开发的时候,也可以多思考一下,我们所开发软件的价值点在哪里?真正需要使用软件实现价值的地方在哪里?你应该关注业务、理解业务,有价值导向,用自己的技术为公司创造真正的价值,进而实现自己的人生价值。而不是整天埋头在需求说明文档里,做一个没有思考的代码机器人。

Hadoop发布之后,Yahoo很快就用了起来。大概又过了一年到了2007年,百度和阿里巴巴也开始使用Hadoop进行大数据存储与计算。

2008年,Hadoop正式成为Apache的顶级项目,后来Doug Cutting本人也成为了Apache基金会的主席。自此,Hadoop作为软件开发领域的一颗明星冉冉升起。

同年,专门运营Hadoop的商业公司Cloudera成立,Hadoop得到进一步的商业支持。

这个时候,Yahoo的一些人觉得用MapReduce进行大数据编程太麻烦了,于是便开发了Pig。Pig是一种脚本语言,使用类SQL的语法,开发者可以用Pig脚本描述要对大数据集上进行的操作,Pig经过编译后会生成MapReduce程序,然后在Hadoop上运行。

编写Pig脚本虽然比直接MapReduce编程容易,但是依然需要学习新的脚本语法。于是Facebook又发布了Hive。Hive支持使用SQL语法来进行大数据计算,比如说你可以写个Select语句进行数据查询,然后Hive会把SQL语句转化成MapReduce的计算程序。

这样,熟悉数据库的数据分析师和工程师便可以无门槛地使用大数据进行数据分析和处理了。Hive出现后极大程度地降低了Hadoop的使用难度,迅速得到开发者和企业的追捧。据说,2011年的时候,Facebook大数据平台上运行的作业90%都来源于Hive。

随后,众多Hadoop周边产品开始出现,大数据生态体系逐渐形成,其中包括:专门将关系数据库中的数据导入导出到Hadoop平台的Sqoop;针对大规模日志进行分布式收集、聚合和传输的Flume;MapReduce工作流调度引擎Oozie等。

在Hadoop早期,MapReduce既是一个执行引擎,又是一个资源调度框架,服务器集群的资源调度管理由MapReduce自己完成。但是这样不利于资源复用,也使得MapReduce非常臃肿。于是一个新项目启动了,将MapReduce执行引擎和资源调度分离开来,这就是Yarn。2012年,Yarn成为一个独立的项目开始运营,随后被各类大数据产品支持,成为大数据平台上最主流的资源调度系统。

同样是在2012年,UC伯克利AMP实验室(Algorithms、Machine和People的缩写)开发的Spark开始崭露头角。当时AMP实验室的马铁博士发现使用MapReduce进行机器学习计算的时候性能非常差,因为机器学习算法通常需要进行很多次的迭代计算,而MapReduce每执行一次Map和Reduce计算都需要重新启动一次作业,带来大量的无谓消耗。还有一点就是MapReduce主要使用磁盘作为存储介质,而2012年的时候,内存已经突破容量和成本限制,成为数据运行过程中主要的存储介质。Spark一经推出,立即受到业界的追捧,并逐步替代MapReduce在企业应用中的地位。

一般说来,像MapReduce、Spark这类计算框架处理的业务场景都被称作批处理计算,因为它们通常针对以“天”为单位产生的数据进行一次计算,然后得到需要的结果,这中间计算需要花费的时间大概是几十分钟甚至更长的时间。因为计算的数据是非在线得到的实时数据,而是历史数据,所以这类计算也被称为大数据离线计算。

而在大数据领域,还有另外一类应用场景,它们需要对实时产生的大量数据进行即时计算,比如对于遍布城市的监控摄像头进行人脸识别和嫌犯追踪。这类计算称为大数据流计算,相应地,有Storm、Flink、Spark Streaming等流计算框架来满足此类大数据应用的场景。 流式计算要处理的数据是实时在线产生的数据,所以这类计算也被称为大数据实时计算。

在典型的大数据的业务场景下,数据业务最通用的做法是,采用批处理的技术处理历史全量数据,采用流式计算处理实时新增数据。而像Flink这样的计算引擎,可以同时支持流式计算和批处理计算。

除了大数据批处理和流处理,NoSQL系统处理的主要也是大规模海量数据的存储与访问,所以也被归为大数据技术。 NoSQL曾经在2011年左右非常火爆,涌现出HBase、Cassandra等许多优秀的产品,其中HBase是从Hadoop中分离出来的、基于HDFS的NoSQL系统。

我们回顾软件发展的历史会发现,差不多类似功能的软件,它们出现的时间都非常接近,比如Linux和Windows都是在90年代初出现,Java开发中的各类MVC框架也基本都是同期出现,Android和iOS也是前脚后脚问世。2011年前后,各种NoSQL数据库也是层出不群,我也是在那个时候参与开发了阿里巴巴自己的NoSQL系统。

事物发展有自己的潮流和规律,当你身处潮流之中的时候,要紧紧抓住潮流的机会,想办法脱颖而出,即使没有成功,也会更加洞悉时代的脉搏,收获珍贵的知识和经验。而如果潮流已经退去,这个时候再去往这个方向上努力,只会收获迷茫与压抑,对时代、对自己都没有什么帮助。

但是时代的浪潮犹如海滩上的浪花,总是一浪接着一浪,只要你站在海边,身处这个行业之中,下一个浪潮很快又会到来。你需要敏感而又深刻地去观察,略去那些浮躁的泡沫,抓住真正潮流的机会,奋力一搏,不管成败,都不会遗憾。

正所谓在历史前进的逻辑中前进,在时代发展的潮流中发展。通俗的说,就是要在风口中飞翔。

上面我讲的这些基本上都可以归类为大数据引擎或者大数据框架。而大数据处理的主要应用场景包括数据分析、数据挖掘与机器学习。数据分析主要使用Hive、Spark SQL等SQL引擎完成;数据挖掘与机器学习则有专门的机器学习框架TensorFlow、Mahout以及MLlib等,内置了主要的机器学习和数据挖掘算法。

此外,大数据要存入分布式文件系统(HDFS),要有序调度MapReduce和Spark作业执行,并能把执行结果写入到各个应用系统的数据库中,还需要有一个大数据平台整合所有这些大数据组件和企业应用系统。

图中的所有这些框架、平台以及相关的算法共同构成了大数据的技术体系,我将会在专栏后面逐个分析,帮你能够对大数据技术原理和应用算法构建起完整的知识体系,进可以专职从事大数据开发,退可以在自己的应用开发中更好地和大数据集成,掌控自己的项目。

希望对您有所帮助!~

nosql是什么

NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。

虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的工具,可以为大数据建立快速、可扩展的存储库。

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。

对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:

不需要预定义模式:不需要事先定义数据模式,预定义表结构。数据中的每条记录都可能有不同的属性和格式。当插入数据时,并不需要预先定义它们的模式。

无共享架构:相对于将所有数据存储的存储区域网络中的全共享架构。NoSQL往往将数据划分后存储在各个本地服务器上。因为从本地磁盘读取数据的性能往往好于通过网络传输读取数据的性能,从而提高了系统的性能。

弹性可扩展:可以在系统运行的时候,动态增加或者删除结点。不需要停机维护,数据可以自动迁移。

分区:相对于将数据存放于同一个节点,NoSQL数据库需要将数据进行分区,将记录分散在多个节点上面。并且通常分区的同时还要做复制。这样既提高了并行性能,又能保证没有单点失效的问题。

异步复制:和RAID存储系统不同的是,NoSQL中的复制,往往是基于日志的异步复制。这样,数据就可以尽快地写入一个节点,而不会被网络传输引起迟延。缺点是并不总是能保证一致性,这样的方式在出现故障的时候,可能会丢失少量的数据。

BASE:相对于事务严格的ACID特性,NoSQL数据库保证的是BASE特性。BASE是最终一致性和软事务。

NoSQL数据库并没有一个统一的架构,两种NoSQL数据库之间的不同,甚至远远超过两种关系型数据库的不同。可以说,NoSQL各有所长,成功的NoSQL必然特别适用于某些场合或者某些应用,在这些场合中会远远胜过关系型数据库和其他的NoSQL。


新闻标题:nosql发展历程,nosql的技术特点
网站URL:http://lszwz.com/article/dsdgdhi.html

其他资讯

售后响应及时

7×24小时客服热线

数据备份

更安全、更高效、更稳定

价格公道精准

项目经理精准报价不弄虚作假

合作无风险

重合同讲信誉,无效全额退款