打印杨辉三角代码如下:
创新互联建站主营铁西网站建设的网络公司,主营网站建设方案,成都app开发,铁西h5小程序设计搭建,铁西网站营销推广欢迎铁西等地区企业咨询
public class woo {
public static void triangle(int n) {
int[][] array = new int[n][n];//三角形数组
for(int i=0;iarray.length;i++){
for(int j=0;j=i;j++){
if(j==0||j==i){
array[i][j]=1;
}else{
array[i][j] = array[i-1][j-1]+array[i-1][j];
}
System.out.print(array[i][j]+"\t");
}
System.out.println();
}
}
public static void main(String args[]) {
triangle(9);
}
}
扩展资料:
杨辉三角起源于中国,在欧洲这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年。它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的优美结合。
杨辉三角具有以下性质:
1、最外层的数字始终是1;
2、第二层是自然数列;
3、第三层是三角数列;
4、角数列相邻数字相加可得方数数列。
1.杨辉三角形由数字排列,可以把它看做一个数字表,其基本特性是两侧数值均为1,其他位置的数值是其正上方的数字与左上角数值之和,下面是java使用for循环输出包括10行在内的杨辉三角形
2.思路是创建一个整型二维数组,包含10个一维数组。使用双层循环,在外层循环中初始化每一个第二层数组的大小。在内层循环中,先将两侧的数组元素赋值为1,其他数值通过公式计算,然后输出数组元素。
代码如下:
public class YanghuiTriangle {
public static void main(String[] args) {
int triangle[][]=new int[10][];// 创建二维数组
// 遍历二维数组的第一层
for (int i = 0; i triangle.length; i++) {
triangle[i]=new int[i+1];// 初始化第二层数组的大小
// 遍历第二层数组
for(int j=0;j=i;j++){
// 将两侧的数组元素赋值为1
if(i==0||j==0||j==i){
triangle[i][j]=1;
}else{// 其他数值通过公式计算
triangle[i][j]=triangle[i-1][j]+triangle[i-1][j-1];
}
System.out.print(triangle[i][j]+"\t"); // 输出数组元素
}
System.out.println(); //换行
}
}
}
我的绝对正确 书上抄的 还验证过!
public static void main(String[]args){
int r=6;
int a[][]=new int[r+1][]; //表示6个一维数组组成
for(int i=0;i=r;i++){
a[i]=new int[i+1];} //表示使用for循环为一维数组指定列数
YangHui(a,r);
}
static void YangHui(int a[][],int r){
for(int i=0;i=r;i++){
for(int j=0;ja[i].length;j++){
if(i==0||j==0||j==a[i].length-1)
a[i][j]=1;
else
a[i][j]=a[i-1][j-1]+a[i-1][j];
}
}
for(int i=0;i=r;i++){
for(int j=0;ja[i].length;j++){
System.out.print(a[i][j]+" ");}
System.out.println();}
}
}
package 大溶合;
/*
* @author qingsongwang
* @杨辉三角,标准的for实现..
*/
class yanghuisanjiao
{
public static void main(String args[]){
final int MAX=10;
int mat[][]=new int[MAX][];
int i=0,j,n;
n=MAX;
for(i=0;in;i++)
{
mat[i]=new int[i+1];
mat[i][0]=1;
mat[i][i]=1;
for(j=1;ji;j++)
mat[i][j]=mat[i-1][j-1]+mat[i-1][j];
}
for(i=0;in;i++)
{
for(j=0;jn-1;j++)
System.out.print(" ");
for(j=0;j=i;j++)
System.out.print(" "+mat[i][j]);
System.out.println();
}
}
}
执行的效果如下......
打印杨辉三角代码如下:
public class woo {
public static void triangle(int n) {
int[][] array = new int[n][n];//三角形数组
for(int i=0;iarray.length;i++){
for(int j=0;j=i;j++){
if(j==0||j==i){
array[i][j]=1;
}else{
array[i][j] = array[i-1][j-1]+array[i-1][j];
}
System.out.print(array[i][j]+"\t");
}
System.out.println();
}
}
public static void main(String args[]) {
triangle(9);
}
}
扩展资料:
杨辉三角起源于中国,在欧洲这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年。它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的优美结合。
杨辉三角具有以下性质:
1、最外层的数字始终是1;
2、第二层是自然数列;
3、第三层是三角数列;
4、角数列相邻数字相加可得方数数列。
打印杨辉三角代码如下:
public class woo {
public static void triangle(int n) {
int[][] array = new int[n][n];//三角形数组
for(int i=0;iarray.length;i++){
for(int j=0;j=i;j++){
if(j==0||j==i){
array[i][j]=1;
}else{
array[i][j] = array[i-1][j-1]+array[i-1][j];
}
System.out.print(array[i][j]+"\t");
}
System.out.println();
}
}
public static void main(String args[]) {
triangle(9);
}
}
扩展资料:
杨辉三角起源于中国,在欧洲这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年。它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的优美结合。
杨辉三角具有以下性质:
1、最外层的数字始终是1;
2、第二层是自然数列;
3、第三层是三角数列;
4、角数列相邻数字相加可得方数数列。
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款