分析表达式规律:
目前成都创新互联已为上1000家的企业提供了网站建设、域名、网页空间、网站改版维护、企业网站设计、四子王网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
当 n=1 时,表达式为 1 ;
当 n=2 时,表达式为 1+(1+(3*2-1))=1+(1+5) ;
当 n=3 时,表达式为 1+(1+5)+(1+5+(3*2-1))=1+(1+5)+(1+5+8) ;
第一个数为 1 ,从第二数开始,该数为(前一个数+(3*n-1) (n=2)),然后再累加所有数。
参考代码如下:
public class MathExp {
public static void main(String[] args) {
System.out.println(exp(3));
}
public static int exp(int n){
if(n 0) return 0;
int res = 0; // 累计总和
int num = 1; // 第一个数为 1 ,从第二个数开始是 num + 3*n-1
for(int i = 1; i = n; i++){
if(i == 1){
res = num;
}else {
num += 3 * i - 1; // 第 n 个 数
res += num; // 累加第 n 个 数
}
}
return res;
}
}
如果算的数小,可以放在int类型或者double类型的变量里.
太大的,就要放到BigInteger类型的变量里.
先看看放到int类型的变量代码
---------------------------------------------------------------
/*
* 数量比较小的情况下可以用这个来计算
* 太大了就存放不了了
*/
public class PowerNumber {
public static void main(String[] args) {
PowerNumber power = new PowerNumber();
// 准备求第几项的值
int n = 10;
// 这里先打印第4项
System.out.println("第" + n + "项结果是:" + power.powerNumberN(n));
// 这里打印前4项的和
System.out.println("前" + n + "项的和是:" + power.powerNumberSum(n));
}
// 计算第n项的值
int powerNumberN(int n) {
// 用来存放第n个数
int sum = 1;
for (int i = 1; i = n; i++) {
sum = 2 * sum;
}
return sum;
}
// 计算前n项的和
int powerNumberSum(int n) {
// 存放前n项的和
int sumNum = 0;
int frontN = n;
for (int i = 1; i = n; i++) {
// 存放第n项的值
int sum = 1;
for (int j = 1; j = frontN; j++) {
// 第n项的值
sum = 2 * sum;
}
//求前一项
frontN--;
// 求出的值加到总和里
sumNum = sumNum + sum;
}
return sumNum;
}
}
------------------------------------------------------
前4项的结果:
第4项结果是:16
前4项的和是:30
--------------------
前20项的结果:
第20项结果是:1048576
前20项的和是:2097150
----------------------
前40项的结果......
第40项结果是:0
前40项的和是:-2
================================================
再看看放到BigInteger类型的变量里的程序
---------------------------------
import java.math.BigInteger;
public class Power {
public static void main(String[] args) {
Power power = new Power();
// 准备求第几项的值
int n = 4;
// 这里先打印第4项
System.out.println("第" + n + "项结果是:" + power.powerNum(n));
// 这里打印前4项的和
System.out.println("前" + n + "项的和是:" + power.sumPowerNum(n));
}
// 计算第n项的值
BigInteger powerNum(int n) {
BigInteger num = BigInteger.ONE;
for (int i = 1; i = n; i++) {
// 为了防止结果过大,将结果放在BigInteger中
// 每次对结果乘以2
num = num.multiply(new BigInteger(new Integer(2).toString()));
}
// 打印2^n结果
return num;
}
// 计算前n项的值
BigInteger sumPowerNum(int n) {
// 存放前n项的值
BigInteger sumNum = BigInteger.ZERO;
int frontN = n;
for (int i = 1; i = n; i++) {
// 存放第n项的值
BigInteger num = BigInteger.ONE;
for (int j = 1; j = frontN; j++) {
// 为了防止结果过大,将结果放在BigInteger中
// 每次对结果乘以2
num = num.multiply(new BigInteger(new Integer(2).toString()));
}
// 每次循环让最大值减掉1,以计算前面的值
frontN--;
// 计算出第n项的值,将其放入总和sumNum中
sumNum = sumNum.add(num);
}
return sumNum;
}
}
---------------------------------------------------
前4项的结果:
第4项结果是:16
前4项的和是:30
--------------------------------------------------
前40项的结果:
第40项结果是:1099511627776
前40项的和是:2199023255550
---------------------------------------------------------------------------------------------
前400项的结果:
第400项结果是:2582249878086908589655919172003011874329705792829223512830659356540647622016841194629645353280137831435903171972747493376
前400项的和是:5164499756173817179311838344006023748659411585658447025661318713081295244033682389259290706560275662871806343945494986750
-------------------------------------------------------------------------------------
前4000项的结果:
第4000项结果是:13182040934309431001038897942365913631840191610932727690928034502417569281128344551079752123172122033140940756480716823038446817694240581281731062452512184038544674444386888956328970642771993930036586552924249514488832183389415832375620009284922608946111038578754077913265440918583125586050431647284603636490823850007826811672468900210689104488089485347192152708820119765006125944858397761874669301278745233504796586994514054435217053803732703240283400815926169348364799472716094576894007243168662568886603065832486830606125017643356469732407252874567217733694824236675323341755681839221954693820456072020253884371226826844858636194212875139566587445390068014747975813971748114770439248826688667129237954128555841874460665729630492658600179338272579110020881228767361200603478973120168893997574353727653998969223092798255701666067972698906236921628764772837915526086464389161570534616956703744840502975279094087587298968423516531626090898389351449020056851221079048966718878943309232071978575639877208621237040940126912767610658141079378758043403611425454744180577150855204937163460902512732551260539639221457005977247266676344018155647509515396711351487546062479444592779055555421362722504575706910949376
前4000项的和是:26364081868618862002077795884731827263680383221865455381856069004835138562256689102159504246344244066281881512961433646076893635388481162563462124905024368077089348888773777912657941285543987860073173105848499028977664366778831664751240018569845217892222077157508155826530881837166251172100863294569207272981647700015653623344937800421378208976178970694384305417640239530012251889716795523749338602557490467009593173989028108870434107607465406480566801631852338696729598945432189153788014486337325137773206131664973661212250035286712939464814505749134435467389648473350646683511363678443909387640912144040507768742453653689717272388425750279133174890780136029495951627943496229540878497653377334258475908257111683748921331459260985317200358676545158220041762457534722401206957946240337787995148707455307997938446185596511403332135945397812473843257529545675831052172928778323141069233913407489681005950558188175174597936847033063252181796778702898040113702442158097933437757886618464143957151279754417242474081880253825535221316282158757516086807222850909488361154301710409874326921805025465102521079278442914011954494533352688036311295019030793422702975092124958889185558111110842725445009151413821898750
可以用线性代数的知识解决。
把 X,Y,Z 和 后面的值 转化为 行列式,计算行列式的值就可以求解这道题目了。
叫 克莱姆法则,查查资料,就能解决了。
如果你还需要答案的话,跟我联系。qq:2838844
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款