python实现矩阵乘法的方法
10年的浦北网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销的优势是能够根据用户设备显示端的尺寸不同,自动调整浦北建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“浦北网站设计”,“浦北网站推广”以来,每个客户项目都认真落实执行。
本文实例讲述了python实现矩阵乘法的方法。分享给大家供大家参考。
具体实现方法如下:
def matrixMul(A, B):
res = [[0] * len(B[0]) for i in range(len(A))]
for i in range(len(A)):
for j in range(len(B[0])):
for k in range(len(B)):
res[i][j] += A[i][k] * B[k][j]
return res
def matrixMul2(A, B):
return [[sum(a * b for a, b in zip(a, b)) for b in zip(*B)] for a in A]
a = [[1,2], [3,4], [5,6], [7,8]]
b = [[1,2,3,4], [5,6,7,8]]
print matrixMul(a,b)
print matrixMul(b,a)
print "-"*90
print matrixMul2(a,b)
print matrixMul2(b,a)
print "-"*90
from numpy import dot
print map(list,dot(a,b))
print map(list,dot(b,a))
#Out:
#[[11, 14, 17, 20], [23, 30, 37, 44], [35, 46, 57, 68], [47, 62, 77, 92]]
#[[50, 60], [114, 140]]
#------------------------------------------------------------------------
#[[11, 14, 17, 20], [23, 30, 37, 44], [35, 46, 57, 68], [47, 62, 77, 92]]
#[[50, 60], [114, 140]]
#------------------------------------------------------------------------
#[[11, 14, 17, 20], [23, 30, 37, 44], [35, 46, 57, 68], [47, 62, 77, 92]]
#[[50, 60], [114, 140]]
希望本文所述对大家的Python程序设计有所帮助。
def mmult(a,b):
zip_b = zip(*b)
return [[sum(ele_a*ele_b for ele_a, ele_b in zip(row_a, col_b))
for col_b in zip_b] for row_a in a]
x = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
y = [[1,2],[1,2],[3,4]]
print(mmult(x,y))
或者可以直接用numpy
import numpy as np # I want to check my solution with numpy
mx = np.matrix(x)
my = np.matrix(y)
print(mx * my)
python实现矩阵乘法的方法
def matrixMul(A, B):
res = [[0] * len(B[0]) for i in range(len(A))]
for i in range(len(A)):
for j in range(len(B[0])):
for k in range(len(B)):
res[i][j] += A[i][k] * B[k][j]
return res
def matrixMul2(A, B):
return [[sum(a * b for a, b in zip(a, b)) for b in zip(*B)] for a in A]
a = [[1,2], [3,4], [5,6], [7,8]]
b = [[1,2,3,4], [5,6,7,8]]
print matrixMul(a,b)
print matrixMul(b,a)
乘积形式
除了上述的矩阵乘法以外,还有其他一些特殊的“乘积”形式被定义在矩阵上,值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。
1.numpy的导入和使用
data1=mat(zeros((
)))
#创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)
data2=mat(ones((
)))
#创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int
data3=mat(random.rand(
))
#这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix
data4=mat(random.randint(
10
,size=(
)))
#生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数
data5=mat(random.randint(
,size=(
))
#产生一个2-8之间的随机整数矩阵
data6=mat(eye(
,dtype=
int
))
#产生一个2*2的对角矩阵
a1=[
]; a2=mat(diag(a1))
#生成一个对角线为1、2、3的对角矩阵
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款