本篇文章为大家展示了如何在Pandas中利用DataFrame求差集,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
我们提供的服务有:网站设计制作、成都网站建设、微信公众号开发、网站优化、网站认证、元江县ssl等。为1000+企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的元江县网站制作公司在Pandas中 求差集没有专门的函数。处理办法就是将两个DataFrame追加合并,然后去重。
divident.append(hasThisYearDivident) noHasThisYearDivident = divident.drop_duplicates(subset='ts_code', keep=False, inplace=True, ignore_index=True)
具体函数用法:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.append.html#pandas.DataFrame.append
在pandas中,两个DataFrame的差集并没有直接的库内置方法,现在我们希望有一种方法,就像python中set内置的求差集一样,来找到两个DataFrame的差集。
>>> a=set((1,2,3)) >>> a {1, 2, 3} >>> b=set((2,3,4)) >>> b {2, 3, 4} >>> a-b {1}
上面代码片段是对set的内置求差集方法的回顾,现在我们希望能有类似的方法来找两个DataFrame的差集。
解决思路是这样的:
对于有同样Index的a,b两个DataFrame,如果现在要求a对b的差集,那么可以(1)连续两次扩充a,使用append方法(2)然后使用drop_duplicates方法对a进行去重,并且参数keep=False。原理很简单,也很巧妙,连续扩充2次a,那么新扩充完后的DataFrame中来自b的row肯定是重复的,去重时候,b全部被删除,与此同时,a中跟b重复的row也会顺带着被删除。
代码实现:
>>> import pandas as pd >>> data_a={'state':[1,1,2],'pop':['a','b','c']} >>> data_b={'state':[1,2,3],'pop':['b','c','d']} >>> a=pd.DataFrame(data_a) >>> b=pd.DataFrame(data_b) >>> a state pop 0 1 a 1 1 b 2 2 c >>> b state pop 0 1 b 1 2 c 2 3 d >>> a=a.append(b) >>> a=a.append(b) >>> a state pop 0 1 a 1 1 b 2 2 c 0 1 b 1 2 c 2 3 d 0 1 b 1 2 c 2 3 d >>> a.drop_duplicates(subset=['state','pop'],keep=False) state pop 0 1 a
上述内容就是如何在Pandas中利用DataFrame求差集,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款