AndroidLinker与SO加壳技术之上篇-创新互联

1. 前言

Android 系统安全愈发重要,像传统pc安全的可执行文件加固一样,应用加固是Android系统安全中非常重要的一环。目前Android 应用加固可以分为dex加固和Native加固,Native 加固的保护对象为 Native 层的 SO 文件,使用加壳、反调试、混淆、VM 等手段增加SO文件的反编译难度。目前最主流的 SO 文件保护方案还是加壳技术, 在SO文件加壳和脱壳的***技术领域,最重要的基础的便是对于 Linker 即装载链接机制的理解。对于非安全方向开发者,深刻理解系统的装载与链接机制也是进阶的必要条件。

专注于为中小企业提供网站设计制作、成都网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业平山免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上千企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

本文详细分析了 Linker 对 SO 文件的装载和链接过程,最后对 SO 加壳的关键技术进行了简要的介绍。

对于 Linker 的学习,还应该包括 Linker 自举、可执行文件的加载等技术,但是限于本人的技术水平,本文的讨论范围限定在 SO 文件的加载,也就是在调用dlopen("libxx.SO")之后,Linker 的处理过程。

本文基于 Android 5.0 AOSP 源码,仅针对 ARM 平台,为了增强可读性,文中列举的源码均经过删减,去除了其他 CPU 架构的相关源码以及错误处理。

:阅读本文的读者需要对 ELF 文件结构有一定的了解。


2. SO 的装载与链接

2.1 整体流程说明

1. do_dlopen
调用 dl_open 后,中间经过 dlopen_ext, 到达第一个主要函数 do_dlopen:

soinfo* do_dlopen(const char* name, int flags, const Android_dlextinfo* extinfo) {
 protect_data(PROT_READ | PROT_WRITE);
 soinfo* si = find_library(name, flags, extinfo); // 查找 SO
 if (si != NULL) {
  si->CallConstructors(); // 调用 SO 的 init 函数
 }
 protect_data(PROT_READ);
 return si;
}

do_dlopen 调用了两个重要的函数,第一个是find_library, 第二个是 soinfo 的成员函数 CallConstructors,find_library 函数是 SO 装载链接的后续函数, 完成 SO 的装载链接后, 通过 CallConstructors 调用 SO 的初始化函数。

2. find_library_internal
find_library 直接调用了 find_library_internal,下面直接看 find_library_internal函数:

static soinfo* find_library_internal(const char* name, int dlflags, const Android_dlextinfo* extinfo) {
 if (name == NULL) {
  return somain;
 }
 soinfo* si = find_loaded_library_by_name(name);  // 判断 SO 是否已经加载
 if (si == NULL) {
  TRACE("[ '%s' has not been found by name.  Trying harder...]", name);
  si = load_library(name, dlflags, extinfo);   // 继续 SO 的加载流程
 }
 if (si != NULL && (si->flags & FLAG_LINKED) == 0) {
  DL_ERR("recursive link to \"%s\"", si->name);
  return NULL;
 }
 return si;
}

find_library_internal 首先通过 find_loaded_library_by_name 函数判断目标 SO 是否已经加载,如果已经加载则直接返回对应的soinfo指针,没有加载的话则调用 load_library 继续加载流程,下面看 load_library 函数。

3. load_library

static soinfo* load_library(const char* name, int dlflags, const Android_dlextinfo* extinfo) {
  int fd = -1;
  ...
  // Open the file.
  fd = open_library(name);         // 打开 SO 文件,获得文件描述符 fd

  ElfReader elf_reader(name, fd);     // 创建 ElfReader 对象
  ...
  // Read the ELF header and load the segments.
  if (!elf_reader.Load(extinfo)) {     // 使用 ElfReader 的 Load 方法,完成 SO 装载
    return NULL;
  }

  soinfo* si = soinfo_alloc(SEARCH_NAME(name), &file_stat);  // 为 SO 分配新的 soinfo 结构
  if (si == NULL) {
    return NULL;
  }
  si->base = elf_reader.load_start();  // 根据装载结果,更新 soinfo 的成员变量
  si->size = elf_reader.load_size();
  si->load_bias = elf_reader.load_bias();
  si->phnum = elf_reader.phdr_count();
  si->phdr = elf_reader.loaded_phdr();
  ...
  if (!soinfo_link_p_w_picpath(si, extinfo)) {  // 调用 soinfo_link_p_w_picpath 完成 SO 的链接过程
   soinfo_free(si);
   return NULL;
  }
  return si;
}

load_library 函数呈现了 SO 装载链接的整个流程,主要有3步:

  1. 装载:创建ElfReader对象,通过 ElfReader 对象的 Load 方法将 SO 文件装载到内存

  2. 分配soinfo:调用 soinfo_alloc 函数为 SO 分配新的 soinfo 结构,并按照装载结果更新相应的成员变量

  3. 链接: 调用 soinfo_link_p_w_picpath 完成 SO 的链接

通过前面的分析,可以看到, load_library 函数中包含了 SO 装载链接的主要过程, 后文主要通过分析 ElfReader 类和 soinfo_link_p_w_picpath 函数, 来分别介绍 SO 的装载和链接过程。

2.2 装载

在 load_library 中, 首先初始化 elf_reader 对象, 第一个参数为 SO 的名字, 第二个参数为文件描述符 fd:
ElfReader elf_reader(name, fd)
之后调用 ElfReader 的 load 方法装载 SO。

   ...
  // Read the ELF header and load the segments.
  if (!elf_reader.Load(extinfo)) {
    return NULL;
  }
  ...

ElfReader::Load 方法如下:

bool ElfReader::Load(const Android_dlextinfo* extinfo) {
 return ReadElfHeader() &&       // 读取 elf header
    VerifyElfHeader() &&      // 验证 elf header
    ReadProgramHeader() &&     // 读取 program header
    ReserveAddressSpace(extinfo) &&// 分配空间
    LoadSegments() &&        // 按照 program header 指示装载 segments
    FindPhdr();           // 找到装载后的 phdr 地址
}

ElfReader::Load 方法首先读取 SO 的elf header,再对elf header进行验证,之后读取program header,根据program header 计算 SO 需要的内存大小并分配相应的空间,紧接着将 SO 按照以 segment 为单位装载到内存,最后在装载到内存的 SO 中找到program header,方便之后的链接过程使用。
下面深入 ElfReader 的这几个成员函数进行详细介绍。

2.2.1 read&verify elfheader

bool ElfReader::ReadElfHeader() {
 ssize_t rc = read(fd_, &header_, sizeof(header_));

 if (rc != sizeof(header_)) {
  return false;
 }
 return true;
}

ReadElfHeader 使用 read 直接从 SO 文件中将 elfheader 读取 header 中,header_ 为 ElfReader 的成员变量,类型为 Elf32_Ehdr,通过 header 可以方便的访问 elf header中各个字段,elf header中包含有 program header table、section header table等重要信息。
对 elf header 的验证包括:

  • magic字节

  • 32/64 bit 与当前平台是否一致

  • 大小端

  • 类型:可执行文件、SO …

  • 版本:一般为 1,表示当前版本

  • 平台:ARM、x86、amd64 …

有任何错误都会导致加载失败。

2.2.2 Read ProgramHeader

bool ElfReader::ReadProgramHeader() {
 phdr_num_ = header_.e_phnum;    // program header 数量

 // mmap 要求页对齐
 ElfW(Addr) page_min = PAGE_START(header_.e_phoff);
 ElfW(Addr) page_max = PAGE_END(header_.e_phoff + (phdr_num_ * sizeof(ElfW(Phdr))));
 ElfW(Addr) page_offset = PAGE_OFFSET(header_.e_phoff);

 phdr_size_ = page_max - page_min;
 // 使用 mmap 将 program header 映射到内存
 void* mmap_result = mmap(NULL, phdr_size_, PROT_READ, MAP_PRIVATE, fd_, page_min);

 phdr_mmap_ = mmap_result;
 // ElfReader 的成员变量 phdr_table_ 指向program header table
 phdr_table_ = reinterpret_cast(reinterpret_cast(mmap_result) + page_offset);
 return true;
}

将 program header 在内存中单独映射一份,用于解析program header 时临时使用,在 SO 装载到内存后,便会释放这块内存,转而使用装载后的 SO 中的program header。

2.2.3 reserve space & 计算 load size

bool ElfReader::ReserveAddressSpace(const Android_dlextinfo* extinfo) {
 ElfW(Addr) min_vaddr;
 // 计算 加载SO 需要的空间大小
 load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
 // min_vaddr 一般情况为零,如果不是则表明 SO 指定了加载基址
 uint8_t* addr = reinterpret_cast(min_vaddr);
 void* start;

 int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
 start = mmap(addr, load_size_, PROT_NONE, mmap_flags, -1, 0);

 load_start_ = start;
 load_bias_ = reinterpret_cast(start) - addr;
 return true;
}

首先调用 phdr_table_get_load_size 函数获取 SO 在内存中需要的空间load_size,然后使用 mmap 匿名映射,预留出相应的空间。

关于loadbias: SO 可以指定加载基址,但是 SO 指定的加载基址可能不是页对齐的,这种情况会导致实际映射地址和指定的加载地址有一个偏差,这个偏差便是 load_bias_,之后在针对虚拟地址进行计算时需要使用 load_bias_ 修正。普通的 SO 都不会指定加载基址,这时min_vaddr = 0,则 load_bias_ = load_start_,即load_bias_ 等于加载基址,下文会将load_bias_ 直接称为基址。

下面深入phdr_table_get_load_size分析一下 load_size 的计算:使用成员变量 phdr_table 遍历所有的program header, 找到所有类型为 PT_LOAD 的 segment 的 p_vaddr 的最小值,p_vaddr + p_memsz 的大值,分别作为 min_vaddr 和 max_vaddr,在将两个值分别对齐到页首和页尾,最终使用对齐后的 max_vaddr - min_vaddr 得到 load_size。

size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
                ElfW(Addr)* out_min_vaddr,
                ElfW(Addr)* out_max_vaddr) {
 ElfW(Addr) min_vaddr = UINTPTR_MAX;
 ElfW(Addr) max_vaddr = 0;
 bool found_pt_load = false;
 for (size_t i = 0; i < phdr_count; ++i) {
  const ElfW(Phdr)* phdr = &phdr_table[i];
  if (phdr->p_type != PT_LOAD) {
   continue;
  }
  found_pt_load = true;
  if (phdr->p_vaddr < min_vaddr) {
   min_vaddr = phdr->p_vaddr;     // 记录最小的虚拟地址
  }
  if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
   max_vaddr = phdr->p_vaddr + phdr->p_memsz;  // 记录大的虚拟地址
  }
 }
 if (!found_pt_load) {
  min_vaddr = 0;
 }
 min_vaddr = PAGE_START(min_vaddr);    // 页对齐
 max_vaddr = PAGE_END(max_vaddr);    // 页对齐
 if (out_min_vaddr != NULL) {
  *out_min_vaddr = min_vaddr;
 }
 if (out_max_vaddr != NULL) {
  *out_max_vaddr = max_vaddr;
 }
 return max_vaddr - min_vaddr;     // load_size = max_vaddr - min_vaddr
}

2.2.4 Load Segments

遍历 program header table,找到类型为 PT_LOAD 的 segment:

  1. 计算 segment 在内存空间中的起始地址 segstart 和结束地址 seg_end,seg_start 等于虚拟偏移加上基址load_bias,同时由于 mmap 的要求,都要对齐到页边界得到 seg_page_start 和 seg_page_end。

  2. 计算 segment 在文件中的页对齐后的起始地址 file_page_start 和长度 file_length。

  3. 使用 mmap 将 segment 映射到内存,指定映射地址为 seg_page_start,长度为 file_length,文件偏移为 file_page_start。

bool ElfReader::LoadSegments() {
 for (size_t i = 0; i < phdr_num_; ++i) {
  const ElfW(Phdr)* phdr = &phdr_table_[i];

  if (phdr->p_type != PT_LOAD) {
   continue;
  }
  // Segment 在内存中的地址.
  ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
  ElfW(Addr) seg_end  = seg_start + phdr->p_memsz;

  ElfW(Addr) seg_page_start = PAGE_START(seg_start);
  ElfW(Addr) seg_page_end  = PAGE_END(seg_end);

  ElfW(Addr) seg_file_end  = seg_start + phdr->p_filesz;

  // 文件偏移
  ElfW(Addr) file_start = phdr->p_offset;
  ElfW(Addr) file_end  = file_start + phdr->p_filesz;

  ElfW(Addr) file_page_start = PAGE_START(file_start);
  ElfW(Addr) file_length = file_end - file_page_start;

  if (file_length != 0) {
   // 将文件中的 segment 映射到内存
   void* seg_addr = mmap(reinterpret_cast(seg_page_start),
              file_length,
              PFLAGS_TO_PROT(phdr->p_flags),
              MAP_FIXED|MAP_PRIVATE,
              fd_,
              file_page_start);
  }
  // 如果 segment 可写, 并且没有在页边界结束,那么就将 segemnt end 到页边界的内存清零。
  if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
   memset(reinterpret_cast(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end));
  }

  seg_file_end = PAGE_END(seg_file_end);
  // 将 (内存长度 - 文件长度) 对应的内存进行匿名映射
  if (seg_page_end > seg_file_end) {
   void* zeromap = mmap(reinterpret_cast(seg_file_end),
             seg_page_end - seg_file_end,
             PFLAGS_TO_PROT(phdr->p_flags),
             MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
             -1,
             0);
  }
 }
 return true;
}

2.3 分配 soinfo

load_library 在调用 load_segments 完成装载后,接着调用 soinfo_alloc 函数为目标SO分配soinfo,soinfo_alloc 函数实现如下:

static soinfo* soinfo_alloc(const char* name, struct stat* file_stat) {

 soinfo* si = g_soinfo_allocator.alloc();  //分配空间,可以简单理解为 malloc
 // Initialize the new element.
 memset(si, 0, sizeof(soinfo));
 strlcpy(si->name, name, sizeof(si->name));
 si->flags = FLAG_NEW_SOINFO;

 sonext->next = si;   // 加入到存有所有 soinfo 的链表中
 sonext = si;
 return si;
}

Linker 为 每个 SO 维护了一个soinfo结构,调用 dlopen时,返回的句柄其实就是一个指向该 SO 的 soinfo 指针。soinfo 保存了 SO 加载链接以及运行期间所需的各类信息,简单列举一下:

装载链接期间主要使用的成员:

  • 装载信息

    • const ElfW(Phdr)* phdr;

    • size_t phnum;

    • ElfW(Addr) base;

    • size_t size;

  • 符号信息

    • const char* strtab;

    • ElfW(Sym)* symtab;

  • 重定位信息

    • ElfW(Rel)* plt_rel;

    • size_t plt_rel_count;

    • ElfW(Rel)* rel;

    • size_t rel_count;

  • init 函数和 finit 函数

    • Linker_function_t* init_array;

    • size_t init_array_count;

    • Linker_function_t* fini_array;

    • size_t fini_array_count;

    • Linker_function_t init_func;

    • Linker_function_t fini_func;

运行期间主要使用的成员:

  • 导出符号查找(dlsym):

    • const char* strtab;

    • ElfW(Sym)* symtab;

    • size_t nbucket;

    • size_t nchain;

    • unsigned* bucket;

    • unsigned* chain;

    • ElfW(Addr) load_bias;

  • 异常处理:

    • unsigned* ARM_exidx;

    • size_t ARM_exidx_count;

load_library 在为 SO 分配 soinfo 后,会将装载结果更新到 soinfo 中,后面的链接过程就可以直接使用soinfo的相关字段去访问 SO 中的信息。

   ...
  si->base = elf_reader.load_start();
  si->size = elf_reader.load_size();
  si->load_bias = elf_reader.load_bias();
  si->phnum = elf_reader.phdr_count();
  si->phdr = elf_reader.loaded_phdr();
  ...

点击查看《AndroidLinker与SO加壳技术之下篇》

(腾讯御安全团队)

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网站题目:AndroidLinker与SO加壳技术之上篇-创新互联
文章URL:http://lszwz.com/article/dgodgi.html

其他资讯

售后响应及时

7×24小时客服热线

数据备份

更安全、更高效、更稳定

价格公道精准

项目经理精准报价不弄虚作假

合作无风险

重合同讲信誉,无效全额退款