按值传递函数参数,是拷贝参数的实际值到函数的形式参数的方法调用。在这种情况下,参数在函数内变化对参数不会有影响。
创新互联公司公司2013年成立,先为平谷等服务建站,平谷等地企业,进行企业商务咨询服务。为平谷企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
默认情况下,Go编程语言使用调用通过值的方法来传递参数。在一般情况下,这意味着,在函数内码不能改变用来调用所述函数的参数。考虑函数swap()的定义如下。
代码如下:
/* function definition to swap the values */
func swap(int x, int y) int {
var temp int
temp = x /* save the value of x */
x = y /* put y into x */
y = temp /* put temp into y */
return temp;
}
现在,让我们通过使实际值作为在以下示例调用函数swap():
代码如下:
package main
import "fmt"
func main() {
/* local variable definition */
var a int = 100
var b int = 200
fmt.Printf("Before swap, value of a : %d\n", a )
fmt.Printf("Before swap, value of b : %d\n", b )
/* calling a function to swap the values */
swap(a, b)
fmt.Printf("After swap, value of a : %d\n", a )
fmt.Printf("After swap, value of b : %d\n", b )
}
func swap(x, y int) int {
var temp int
temp = x /* save the value of x */
x = y /* put y into x */
y = temp /* put temp into y */
return temp;
}
让我们把上面的代码放在一个C文件,编译并执行它,它会产生以下结果:
Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :100
After swap, value of b :200
这表明,参数值没有被改变,虽然它们已经在函数内部改变。
通过传递函数参数,即是拷贝参数的地址到形式参数的参考方法调用。在函数内部,地址是访问调用中使用的实际参数。这意味着,对参数的更改会影响传递的参数。
要通过引用传递的值,参数的指针被传递给函数就像任何其他的值。所以,相应的,需要声明函数的参数为指针类型如下面的函数swap(),它的交换两个整型变量的值指向它的参数。
代码如下:
/* function definition to swap the values */
func swap(x *int, y *int) {
var temp int
temp = *x /* save the value at address x */
*x = *y /* put y into x */
*y = temp /* put temp into y */
}
现在,让我们调用函数swap()通过引用作为在下面的示例中传递数值:
代码如下:
package main
import "fmt"
func main() {
/* local variable definition */
var a int = 100
var b int= 200
fmt.Printf("Before swap, value of a : %d\n", a )
fmt.Printf("Before swap, value of b : %d\n", b )
/* calling a function to swap the values.
* a indicates pointer to a ie. address of variable a and
* b indicates pointer to b ie. address of variable b.
*/
swap(a, b)
fmt.Printf("After swap, value of a : %d\n", a )
fmt.Printf("After swap, value of b : %d\n", b )
}
func swap(x *int, y *int) {
var temp int
temp = *x /* save the value at address x */
*x = *y /* put y into x */
*y = temp /* put temp into y */
}
让我们把上面的代码放在一个C文件,编译并执行它,它会产生以下结果:
Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :200
After swap, value of b :100
这表明变化的功能以及不同于通过值调用的外部体现的改变不能反映函数之外。
在以下这段代码中,我们操作一个文件,无论成功与否都需要关闭文件句柄。这里在三处不同的位置都调用了file.Close()方法,代码显得非常冗余。
我们利用延迟调用来优化代码。定义后的defer代码,会在return之前返回,让代码显得更加紧凑,且可读性变强,对上面的代码改造如下:
我们通过这个示例来看一下延迟调用与正常代码之间的执行顺序
先简单分析一下代码逻辑:
从输出中,我们可以观察到如下现象:
从这个实例中,我们很明显观察到,defer语句是在return之前执行
如果一个函数内定义了多个defer,则调用顺序为LIFO(后进先出)方式执行。
仍然是相同的例子,但是在TestDefer中我们定义了三个defer输出,根据LIFO原则,输出的顺序是3rd-2nd-1st,根据最后的结果,也是逆向向上执行defer输出。
就在整理这篇笔记的时候,发现了自己的认知误区,主要是本节实例三中发现的,先来看一下英文的描述:
对于上面的这段话的理解:
下面是代码执行输出,我们来一起分析一下:
虽然在a()函数内,显示的返回了10,但是main函数中得到的结果是defer函数自增后的结果,我们来分析一下代码:
在这篇文章的上一版,我曾经尝试用指针取解释defer修改返回值的类型,但是感觉不够透彻,也让阅读者非常困惑,索性参考了一下go官方blog中的一篇文章,在此基础上进行了扩展。如需要阅读原文,可以参考下面的文章。
智能合约调用是实现一个 DApp 的关键,一个完整的 DApp 包括前端、后端、智能合约及区块 链系统,智能合约的调用是连接区块链与前后端的关键。
我们先来了解一下智能合约调用的基础原理。智能合约运行在以太坊节点的 EVM 中。因此要 想调用合约必须要访问某个节点。
以后端程序为例,后端服务若想连接节点有两种可能,一种是双 方在同一主机,此时后端连接节点可以采用 本地 IPC(Inter-Process Communication,进 程间通信)机制,也可以采用 RPC(Remote Procedure Call,远程过程调用)机制;另 一种情况是双方不在同一台主机,此时只能采用 RPC 机制进行通信。
提到 RPC, 读者应该对 Geth 启动参数有点印象,Geth 启动时可以选择开启 RPC 服务,对应的 默认服务端口是 8545。。
接着,我们来了解一下智能合约运行的过程。
智能合约的运行过程是后端服务连接某节点,将 智能合约的调用(交易)发送给节点,节点在验证了交易的合法性后进行全网广播,被矿工打包到 区块中代表此交易得到确认,至此交易才算完成。
就像数据库一样,每个区块链平台都会提供主流 开发语言的 SDK(Software Development Kit,软件开发工具包),由于 Geth 本身就是用 Go 语言 编写的,因此若想使用 Go 语言连接节点、发交易,直接在工程内导入 go-ethereum(Geth 源码) 包就可以了,剩下的问题就是流程和 API 的事情了。
总结一下,智能合约被调用的两个关键点是节点和 SDK。
由于 IPC 要求后端与节点必须在同一主机,所以很多时候开发者都会采用 RPC 模式。除了 RPC,以太坊也为开发者提供了 json- rpc 接口,本文就不展开讨论了。
接下来介绍如何使用 Go 语言,借助 go-ethereum 源码库来实现智能合约的调用。这是有固定 步骤的,我们先来说一下总体步骤,以下面的合约为例。
步骤 01:编译合约,获取合约 ABI(Application Binary Interface,应用二进制接口)。 单击【ABI】按钮拷贝合约 ABI 信息,将其粘贴到文件 calldemo.abi 中(可使用 Go 语言IDE 创建该文件,文件名可自定义,后缀最好使用 abi)。
最好能将 calldemo.abi 单独保存在一个目录下,输入“ls”命令只能看到 calldemo.abi 文件,参 考效果如下:
步骤 02:获得合约地址。注意要将合约部署到 Geth 节点。因此 Environment 选择为 Web3 Provider。
在【Environment】选项框中选择“Web3 Provider”,然后单击【Deploy】按钮。
部署后,获得合约地址为:0xa09209c28AEf59a4653b905792a9a910E78E7407。
步骤 03:利用 abigen 工具(Geth 工具包内的可执行程序)编译智能合约为 Go 代码。abigen 工具的作用是将 abi 文件转换为 Go 代码,命令如下:
其中各参数的含义如下。 (1)abi:是指定传入的 abi 文件。 (2)type:是指定输出文件中的基本结构类型。 (3)pkg:指定输出文件 package 名称。 (4)out:指定输出文件名。 执行后,将在代码目录下看到 funcdemo.go 文件,读者可以打开该文件欣赏一下,注意不要修改它。
步骤 04:创建 main.go,填入如下代码。 注意代码中 HexToAddress 函数内要传入该合约部署后的地址,此地址在步骤 01 中获得。
步骤 04:设置 go mod,以便工程自动识别。
前面有所提及,若要使用 Go 语言调用智能合约,需要下载 go-ethereum 工程,可以使用下面 的指令:
该指令会自动将 go-ethereum 下载到“$GOPATH/src/github点抗 /ethereum/go-ethereum”,这样还算 不错。不过,Go 语言自 1.11 版本后,增加了 module 管理工程的模式。只要设置好了 go mod,下载 依赖工程的事情就不必关心了。
接下来设置 module 生效和 GOPROXY,命令如下:
在项目工程内,执行初始化,calldemo 可以自定义名称。
步骤 05:运行代码。执行代码,将看到下面的效果,以及最终输出的 2020。
上述输出信息中,可以看到 Go 语言会自动下载依赖文件,这就是 go mod 的神奇之处。看到 2020,相信读者也知道运行结果是正确的了。
本文主要介绍了Go语言中文件读写的相关操作。
文件是什么?
计算机中的文件是存储在外部介质(通常是磁盘)上的数据集合,文件分为文本文件和二进制文件。
os.Open() 函数能够打开一个文件,返回一个 *File 和一个 err 。对得到的文件实例调用 close() 方法能够关闭文件。
为了防止文件忘记关闭,我们通常使用defer注册文件关闭语句。
Read方法定义如下:
它接收一个字节切片,返回读取的字节数和可能的具体错误,读到文件末尾时会返回 0 和 io.EOF 。 举个例子:
使用for循环读取文件中的所有数据。
bufio是在file的基础上封装了一层API,支持更多的功能。
io/ioutil 包的 ReadFile 方法能够读取完整的文件,只需要将文件名作为参数传入。
os.OpenFile() 函数能够以指定模式打开文件,从而实现文件写入相关功能。
其中:
name :要打开的文件名 flag :打开文件的模式。 模式有以下几种:
perm :文件权限,一个八进制数。r(读)04,w(写)02,x(执行)01。
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款