创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名与空间、虚拟空间、营销软件、网站建设、忻州网站维护、网站推广。本篇文章给大家分享的是有关平衡二叉树和二叉排序树之间有什么关系,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
1. 二叉排序树平衡二叉树和二叉排序树并没有直接的关系,但是二叉排序树的查找效率与二叉树的形态有关,所有当我们希望二叉排序树的形态是均匀的时候,这样的二叉树就被称为平衡二叉树。
二叉排序树(Binary Sort Tree),又称二叉查找树(Binary Search Tree),亦称二叉搜索树。
二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
如图下图所示就是一棵二叉排序树:
对二叉排序树进行中序遍历,便可得到一个按关键字排序的序列,如对上图进行一次中序遍历可得到一个有序序列:10,42,45,55,58,63,67,70,83,90,98
就查找的平均时间性能而言,二叉排序树上的查找与折半查找类似,但就维护表的有序性而言,二叉排序树更高效,因为它无需移动节点,只需修改指针即可完成二叉排序树的插入和删除操作。
二叉排序树查找在在最坏的情况下,需要的查找时间取决于树的深度:
通过上面的分析可知,二叉排序树的查找效率与二叉树的形态有关,我们希望二叉排序树的形态是均匀的,这样的二叉树称为平衡二叉树。
将二叉树节点的左子树的深度减去它的右子树的深度称为平衡因子BF,则平衡二叉树上所有节点的平衡因子只可能是-1、0和1,如下图左边的为平衡二叉树,右边的为非平衡二叉树。
因为平衡二叉树上任何节点的左、右子树的深度之差都不会超过1,可以证明它的深度和n个节点的完全二叉树的深度⌊log2n⌋+1是同数量级的。因此,它的平均查找次数也是和⌊log2n⌋+1同数量级的。
要构造一棵平衡二叉树,Georgii M. Adelson-Velskii 和 Evgenii M. Landis 提出了一种动态保持二叉平衡树的方法,其基本思想是:在构造二叉排序树的时候,每当插入一个节点时,先检查是否因插入节点而破坏了树的平衡性,如果是,则找出其中最小不平衡子树,在保持排序树的前提下,调整最小不平衡子树中各节点之间的连接关系,以达到新的平衡,所以这样的平衡二叉树简称AVL树。其中最小平衡子树是指:离插入节点最近,且平衡因子绝对值大于1的节点作为根节点的子树。
注意LL型,以中间节点为轴心进行旋转。为什么这里I为BL左孩子不能将B-BL-I作为LL型,是因为A节点才是离I节点最近的平衡因子绝对值>1的子树,其余节点的平衡因子绝对值都没有超过1;同理当I为BL右孩子,也不能将B-BL-I作为LR型。
2. 单向左旋(RR型): 插入位置为右子树的右子树,右子树为轴心,进行单次向左旋转
注意RR型,以中间节点为轴心进行旋转。这里I为左右子树并不影响其实RR型,原理同上。
3. 双向旋转先左后右(LR型):插入位置为左子树的右子树,要进行两次旋转,先向左旋转,再向右旋转。
插入节点为左孩子:注意为什么不能B-C-I作为子树将其定为RL型,原理同RR型中的解释,对于LR型,,是以R端或者L靠近插入节点端作为旋转轴心(如下图相当于先旋转以B为根的子树后,成为了LL型,再旋转以A为根的子树)。
插入节点为右孩子:
4. 双向旋转先右后左(RL型):插入位置为右子树的左子树,进行两次调整,先右旋转再左旋转;处理情况与LR类似。
插入节点为左孩子:
插入节点为右孩子:
经过上面的我们可以发现,平衡因子与类型有很大的关系,需要以离插入节点最近且平衡因子绝对值>1的节点作为根节点的子树进行判定是哪种类型。
如下图所示,先插入节点2后,成为LL型,然后整体右旋处理后平衡。
再依次插入8和6之后,节点5的平衡因子绝对值>1,成为RL型,所以先以5为根节点,将其子树8-6右旋(成为RR型),然后将5为根节点的整棵树再左旋。
继续插入节点9后,节点4的平衡因子>1,成为RR型,所以以4为根节点,将整体左旋。
undefined
以上就是平衡二叉树和二叉排序树之间有什么关系,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联-成都网站建设公司行业资讯频道。
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款