使用tensorflow实现一个简单的卷积神经,使用的数据集是MNIST,本节将使用两个卷积层加一个全连接层,构建一个简单有代表性的卷积网络。
创新互联服务项目包括鄯善网站建设、鄯善网站制作、鄯善网页制作以及鄯善网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,鄯善网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到鄯善省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!代码是按照书上的敲的,第一步就是导入数据库,设置节点的初始值,Tf.nn.conv2d是tensorflow中的2维卷积,参数x是输入,W是卷积的参数,比如【5,5,1,32】,前面两个数字代表卷积核的尺寸,第三个数字代表有几个通道,比如灰度图是1,彩色图是3.最后一个代表卷积的数量,总的实现代码如下:
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets("MNSIT_data/", one_hot=True) sess = tf.InteractiveSession() # In[2]: #由于W和b在各层中均要用到,先定义乘函数。 #tf.truncated_normal:截断正态分布,即限制范围的正态分布 def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) # In[7]: #bias初始化值0.1. def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) # In[12]: #tf.nn.conv2d:二维的卷积 #conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,data_format=None, name=None) #filter:A 4-D tensor of shape # `[filter_height, filter_width, in_channels, out_channels]` #strides:步长,都是1表示所有点都不会被遗漏。1-D 4值,表示每歌dim的移动步长。 # padding:边界的处理方式,“SAME"、"VALID”可选 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #tf.nn.max_pool:大值池化函数,即求2*2区域的大值,保留最显著的特征。 #max_pool(value, ksize, strides, padding, data_format="NHWC", name=None) #ksize:池化窗口的尺寸 #strides:[1,2,2,1]表示横竖方向步长为2 def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides = [1, 2, 2, 1], padding='SAME') x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) #tf.reshape:tensor的变形函数。 #-1:样本数量不固定 #28,28:新形状的shape #1:颜色通道数 x_image = tf.reshape(x, [-1, 28, 28, 1]) #卷积层包含三部分:卷积计算、激活、池化 #[5,5,1,32]表示卷积核的尺寸为5×5, 颜色通道为1, 有32个卷积核 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #经过2次2×2的池化后,图像的尺寸变为7×7,第二个卷积层有64个卷积核,生成64类特征,因此,卷积最后输出为7×7×64. #tensor进入全连接层之前,先将64张二维图像变形为1维图像,便于计算。 W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #对全连接层做dropot keep_prob = tf.placeholder(tf.float32) h_fc1_dropout = tf.nn.dropout(h_fc1, keep_prob) #又一个全连接后foftmax分类 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_dropout, W_fc2) + b_fc2) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv), reduction_indices=[1])) #AdamOptimizer:Adam优化函数 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y_conv, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) #训练,并且每100个batch计算一次精度 tf.global_variables_initializer().run() for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1], keep_prob:1.0}) print("step %d, training accuracy %g" %(i, train_accuracy)) train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5}) #在测试集上测试 print("test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
售后响应及时
7×24小时客服热线数据备份
更安全、更高效、更稳定价格公道精准
项目经理精准报价不弄虚作假合作无风险
重合同讲信誉,无效全额退款